期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Earth Summit Mission 2022:Scientific Expedition and Research on Mt.Qomolangma Helps Reveal the Synergy between Westerly Winds and Monsoon and the Resulting Climatic and Environmental Effects
1
作者 yaoming ma Weiqiang ma +22 位作者 Huaguang DAI Lei ZHANG Fanglin SUN Jinqiang ZHANG Nan YAO Jianan HE Zhixuan BAI Yuejian XUAN Yunshuai ZHANG Yuan YUAN Chenyi YANG Weijun SUN Ping ZHAO Minghu DING Kongju ZHU Jie HU Bian Bazhuga Bai Juepingcuo Zhuo ma Ren Qingnima Suo Langwangdui Yang Zong Haikun WEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第2期187-193,共7页
“Earth summit mission 2022”is one of the landmark scientific research activities of the Second Tibetan Plateau Scientific Expedition and Research(STEP).This scientific expedition firstly used advanced technology and... “Earth summit mission 2022”is one of the landmark scientific research activities of the Second Tibetan Plateau Scientific Expedition and Research(STEP).This scientific expedition firstly used advanced technology and methods to detect vertical meteorological elements and produce forecasts for mountain climbing.The“Earth summit mission 2022”Qomolangma scientific expedition exceeded an altitude of over 8000 meters for the first time and carried out a comprehensive scientific investigation mission on the summit of Mt.Qomolangma.Among the participants,the westerly–monsoon synergy and influence team stationed in the Mt.Qomolangma region had two tasks:1)detecting the vertical structure of the atmosphere for parameters such as wind,temperature,humidity,and pressure with advanced instruments for high-altitude detection at the Mt.Qomolangma base camp;and 2)observing extreme weather processes to ensure that members of the mountaineering team could successfully reach the top.Through this scientific expedition,a better understanding of the vertical structure and weather characteristics of the complex area of Mt.Qomolangma is gained. 展开更多
关键词 EARTH ALTITUDE weather
下载PDF
Effects of surface heating on precipitation over the Tibetan Plateau and its eastern margin
2
作者 maoShan Li YuChen Liu +4 位作者 Zhao Lv YongHao Jiang Pei Xu yaoming ma FangLin Sun 《Research in Cold and Arid Regions》 CSCD 2023年第5期230-238,共9页
The high terrain of the Tibetan Plateau(TP)has a very important impact on the weather and climate of China,East Asia,South Asia,and even the Northern Hemisphere.However,in recent years,the reasons for the decrease in ... The high terrain of the Tibetan Plateau(TP)has a very important impact on the weather and climate of China,East Asia,South Asia,and even the Northern Hemisphere.However,in recent years,the reasons for the decrease in precipitation in the southeastern edge of the plateau have resulted in cutting-edge research regarding the impact of the TP and its surrounding areas on downstream weather and climate.In this study,the spatial and temporal distribution of surface heat flux and precipitation were analyzed from 1998 to 2022,and the possible mechanism of the decrease of precipitation in the eastern edge of the plateau is explored.The main conclusions are as follows:The annual average sensible heat flux in the TP and its east side is positive,with an average of 33.73 W/m^(2).The annual average latent heat flux is positive,with an average of 42.71 W/m^(2).Precipitation has a similar annual average and seasonal distribution,with modest amounts in the northwest and substantial amounts in the southeast.The average annual accumulated precipitation is 670.69 mm.The first mode of the Empirical Orthogonal Function(EOF)shows that sensible heat flux decreases first,then increases,and then finally decreases during 1998–2022.The modes show the opposite trend in middle part of the plateau.The latent heat flux initially decreases,then increases,and finally decreases in the western plateau and near Sichuan Basin.The mode,however,displays the opposite tendency throughout the rest of the region.The precipitation in the north and south sides of the plateau has decreased since 2013,which is consistent with the changing trend of sensible heat flux.In the rest of the region,the change trend is not obvious.The sensible heat of the main body of the plateau and its east side and Sichuan Basin is negatively correlated with precipitation,that is,when sensible heat flux of the main body of the plateau and its east side and Sichuan Basin is more(less),local precipitation is less(more).The latent heat of the main body of the plateau and its east side,Sichuan Basin is positively correlated with precipitation,indicating that when latent heat flux of the main body of the plateau and its east side,Sichuan Basin is more(less),local precipitation is more(less). 展开更多
关键词 The Tibetan Plateau Surface heating PRECIPITATION EOF Singular value decomposition(SVD)
下载PDF
A comparative study of the land-atmosphere energy and water exchanges over the Tibetan Plateau and the Yangtze River Region
3
作者 Nan Yao yaoming ma +3 位作者 Binbin Wang Jun Zou Jianning Sun Zhipeng Xie 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第2期52-59,共8页
正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8... 正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8个不同地表类型(包括高山荒漠,高山草地,(平原)城市和(平原)草地等)观测站点的地表辐射和能量通量数据.结果显示:(1)TP由于高原大气层稀薄且空气洁净,年平均入射短波辐射为251.3W m^(-2),是YRR的1.7倍.加之高原地表反照率高导致反射辐射(59.6 W m^(-2))是YRR的2.87倍.入射及出射的长波辐射为231.5和338.0 W m^(-2),分别为YRR的0.64和0.83.而两个区域的净辐射差异不大;(2)草地站更多的潜热释放使得地表总加热效率高于城市和高山荒漠,TP和YRR的草地站的年平均潜热分别为35.0和38.8 W m^(-2),而植被稀疏且土壤干燥的高山荒漠地区感热最大,年平均感热为42.1 W m^(-2);其次是城市下垫面,其年平均感热为37.7 W m^(-2).研究结果揭示了不同气候背景下典型下垫面地气相互作用特征,为地气相互作用过程深入分析奠定了基础. 展开更多
关键词 能量和水分交换 辐射分量 地表能量通量 青藏高原 长江流域 不同地表类型
下载PDF
A Study on the Assessment and Integration of Multi-Source Evapotranspiration Products over the Tibetan Plateau
4
作者 Ming CHENG Lei ZHONG +6 位作者 yaoming ma Han ma Yaoxin CHANG Peizhen LI Meilin CHENG Xian WANG Nan GE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期435-448,共14页
Evapotranspiration(ET)is a crucial variable in the terrestrial water,carbon,and energy cycles.At present,a large number of multi source ET products exist.Due to sparse observations,however,great challenges exist in th... Evapotranspiration(ET)is a crucial variable in the terrestrial water,carbon,and energy cycles.At present,a large number of multi source ET products exist.Due to sparse observations,however,great challenges exist in the evaluation and integration of ET products in remote and complex areas such as the Tibetan Plateau(TP).In this paper,the applicability of the multiple collocation(MC)method over the TP is evaluated for the first time,and the uncertainty of multisource ET products(based on reanalysis,remote sensing,and land surface models)is further analyzed,which provides a theoretical basis for ET data fusion.The results show that 1)ET uncertainties quantified via the MC method are lower in RS-based ET products(5.95 vs.7.06 mm month^(-1))than in LSM ET products(10.22 vs.17.97 mm month^(-1))and reanalysis ET estimates(7.27 vs.12.26 mm month-1).2)A multisource evapotranspiration(MET)dataset is generated at a monthly temporal scale with a spatial resolution of 0.25°across the TP during 2005-15.MET has better performance than any individual product.3)Based on the fusion product,the total ET amount over the TP and its patterns of spatiotemporal variability are clearly identified.The annual total ET over the entire TP is approximately 380.60 mm.Additionally,an increasing trend of 1.59±0.85 mm yr^(-1)over the TP is shown during 2005-15.This study provides a basis for future studies on water and energy cycles and water resource management over the TP and surrounding regions. 展开更多
关键词 EVAPOTRANSPIRATION data fusion multiple collocation the Tibetan Plateau
下载PDF
Air Temperature Estimation with MODIS Data over the Northern Tibetan Plateau 被引量:1
5
作者 Fangfang HUANG Weiqiang ma +5 位作者 Binbin WANG Zeyong HU yaoming ma Genhou SUN Zhipeng XIE Yun LIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第5期650-662,共13页
Time series of MODIS land surface temperature(T_s) and normalized difference vegetation index(NDVI) products,combined with digital elevation model(DEM) and meteorological data from 2001 to 2012,were used to map the sp... Time series of MODIS land surface temperature(T_s) and normalized difference vegetation index(NDVI) products,combined with digital elevation model(DEM) and meteorological data from 2001 to 2012,were used to map the spatial distribution of monthly mean air temperature over the Northern Tibetan Plateau(NTP). A time series analysis and a regression analysis of monthly mean land surface temperature(T_s) and air temperature(T_a) were conducted using ordinary linear regression(OLR) and geographical weighted regression(GWR). The analyses showed that GWR,which considers MODIS T_s,NDVI and elevation as independent variables,yielded much better results [R_(Adj)~2> 0.79; root-mean-square error(RMSE) =0.51℃–1.12℃] associated with estimating T_a compared to those from OLR(R_(Adj)~2= 0.40-0.78; RMSE = 1.60℃–4.38℃).In addition,some characteristics of the spatial distribution of monthly T_a and the difference between the surface and air temperature(T_d) are as follows. According to the analysis of the 0℃ and 10℃ isothermals,T_a values over the NTP at elevations of 4000–5000 m were greater than 10℃ in the summer(from May to October),and T_a values at an elevation of3200 m dropped below 0℃ in the winter(from November to April). T_a exhibited an increasing trend from northwest to southeast. Except in the southeastern area of the NTP,T d values in other areas were all larger than 0℃ in the winter. 展开更多
关键词 air TEMPERATURE estimation MODIS land surface temperature GEOGRAPHICAL weighted regression NORTHERN Ti-betan PLATEAU
下载PDF
Estimations of Land Surface Characteristic Parameters and Turbulent Heat Fluxes over the Tibetan Plateau Based on FY-4A/AGRI Data
6
作者 Nan GE Lei ZHONG +5 位作者 yaoming ma Yunfei FU Mijun ZOU Meilin CHENG Xian WANG Ziyu HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第8期1299-1314,共16页
Accurate estimates of land surface characteristic parameters and turbulent heat fluxes play an important role in the understanding of land-atmosphere interaction. In this study, Fengyun-4A (FY-4A) Advanced Geostationa... Accurate estimates of land surface characteristic parameters and turbulent heat fluxes play an important role in the understanding of land-atmosphere interaction. In this study, Fengyun-4A (FY-4A) Advanced Geostationary Radiation Imager (AGRI) satellite data and the China Land Data Assimilation System (CLDAS) meteorological forcing dataset CLDAS-V2.0 were applied for the retrieval of broadband albedo, land surface temperature (LST), radiation flux components, and turbulent heat fluxes over the Tibetan Plateau (TP). The FY-4A/AGRI and CLDAS-V2.0 data from 12 March 2018 to 30 April 2018 were first used to estimate the hourly turbulent heat fluxes over the TP. The time series data of in-situ measurements from the Tibetan Observation and Research Platform were divided into two halves-one for developing retrieval algorithms for broadband albedo and LST based on FY-4A, and the other for the cross validation. Results show the root-mean-square errors (RMSEs) of the FY-4A retrieved broadband albedo and LST were 0.0309 and 3.85 K, respectively, which verifies the applicability of the retrieval method. The RMSEs of the downwelling/upwelling shortwave radiation flux and downwelling/upwelling longwave radiation flux were 138.87/32.78 W m^(−2) and 51.55/17.92 W m^(−2), respectively, and the RMSEs of net radiation flux, sensible heat flux, and latent heat flux were 58.88 W m^(−2), 82.56 W m^(−2) and 72.46 W m^(−2), respectively. The spatial distributions and diurnal variations of LST and turbulent heat fluxes were further analyzed in detail. 展开更多
关键词 FY-4A/AGRI land surface characteristic parameters turbulent heat fluxes Surface Energy Balance System model Tibetan Plateau
下载PDF
Local meteorology in a northern Himalayan valley near Mount Everest and its response to seasonal transitions
7
作者 FangLin Sun yaoming ma ZeYong Hu 《Research in Cold and Arid Regions》 CSCD 2018年第6期493-501,共9页
An automatic weather station(AWS) has been installed at the Qomolangma Station of the China Academy of Sciences(QOMS) since 2005, in a northern Himalayan valley near Mount Everest, with an altitude of 4,270 m a.s.l.. ... An automatic weather station(AWS) has been installed at the Qomolangma Station of the China Academy of Sciences(QOMS) since 2005, in a northern Himalayan valley near Mount Everest, with an altitude of 4,270 m a.s.l.. Nine years of meteorological records(2006–2014) from the automatic weather station(AWS) were analyzed in this study, aiming to understand the response of local weather to the seasonal transition on the northern slopes of Mount Everest, with consideration of the movement of the subtropical jet(STJ) and the onset of the Indian Summer Monsoon(ISM). We found:(1) Both the synoptic circulation and the orography have a profound influence on the local weather, especially the local circulation.(2) Southwesterly(SW) and southeasterly(SE) winds prevail alternately at QOMS in the afternoon through the year. The SW wind was driven by the STJ during the non-monsoon months, while the SE was induced by the trans-Himalayan flow through the Arun Valley, a major valley to the east of Mount Everest, under a background of weak westerly winds aloft.(3) The response of air temperature(T) and specific humidity(q) to the monsoon onset is not as marked as that of the nearsurface winds. The q increases gradually and reaches a maximum in July when the rainy period begins.(4) The alternation between the SW wind at QOMS and the afternoon SE wind in the pre-monsoon season signals the northward shift of the STJ and imminent monsoon onset. The average interval between these two events is 14 days. 展开更多
关键词 mountain METEOROLOGY MONSOON ONSET Trans-Himalayan flow OROGRAPHY influence
下载PDF
青藏高原六套陆面蒸散发产品的评估
8
作者 袁令 马耀明 +1 位作者 陈学龙 王玉阳 《大气科学》 CSCD 北大核心 2023年第3期893-906,共14页
鉴于基于卫星遥感和地面观测开发出的不同时空分辨率蒸散发(ET)产品在青藏高原(TP)仍存在不确定性,从而限制了这些产品在水文气象和气候评估方面的应用。本文基于涡动观测的ET对六种ET产品(PML、EB-ET_V2、GLEAM、GLDAS、ERA5_Land和MOD... 鉴于基于卫星遥感和地面观测开发出的不同时空分辨率蒸散发(ET)产品在青藏高原(TP)仍存在不确定性,从而限制了这些产品在水文气象和气候评估方面的应用。本文基于涡动观测的ET对六种ET产品(PML、EB-ET_V2、GLEAM、GLDAS、ERA5_Land和MOD16)进行评估并比较各产品之间的差异,对TP区域ET产品不确定性做了分析。结果表明:(1)观测值与对应像元ET值之间的年平均态和季节循环存在较好的相关性、一致性。GLEAM产品与观测值吻合度较高并拥有适用性;MOD16产品在大部分站点性能较差。(2)在季节性变化方面,春季ERA5_Land产品与观测的变化较为一致;夏季和冬季GLEAM产品与观测的变化更为接近,而EB-ET_V2产品在秋季表现更有优势。(3)在空间上,GLEAM、EB-ET_V2产品和GLDAS产品存在更高的相关性(相关系数R>0.88)和一致性(一致性指数IOA>0.89);各产品季节时空分布有较大的差异,尤其是春季;相对其他产品,MOD16产品在大部分区域夏季低估且冬季高估。(4)除MOD16外的各产品年平均ET大小相差较大,多年平均的高原ET大小排序为ERA5_Land(401.46 mm a^(-1))>PML(334.37 mm a^(-1))>GLEAM(298.46 mm a^(-1))>EB-ET_V2(271.39 mm a^(-1))>GLDAS(249.67 mm a^(-1)),六套产品估算的青藏高原的总体年蒸发量为330.59 mm a^(-1)。青藏高原不同蒸发产品的比较有助于对高原蒸发的动态变化有更深入的了解,可以为青藏高原水资源评估和区域水管理提供参考。 展开更多
关键词 青藏高原 陆面蒸散发产品 涡动相关观测
下载PDF
Characteristics of land-atmosphere energy and turbulentfluxes over the plateau steppe in central Tibetan Plateau 被引量:3
9
作者 maoShan Li ZhongBo Su +3 位作者 yaoming ma XueLong Chen Lang Zhang ZeYong Hu 《Research in Cold and Arid Regions》 CSCD 2016年第2期103-115,共13页
The land-atmosphere energy and turbulence exchange is key to understanding land surface processes on the Tibetan Plateau(TP). Using observed data for Aug. 4 to Dec. 3, 2012 from the Bujiao observation point(BJ) of the... The land-atmosphere energy and turbulence exchange is key to understanding land surface processes on the Tibetan Plateau(TP). Using observed data for Aug. 4 to Dec. 3, 2012 from the Bujiao observation point(BJ) of the Nagqu Plateau Climate and Environment Station(NPCE-BJ), different characteristics of the energy flux during the Asian summer monsoon(ASM) season and post-monsoon period were analyzed. This study outlines the impact of the ASM on energy fluxes in the central TP. It also demonstrates that the surface energy closure rate during the ASM season is higher than that of the post-monsoon period. Footprint modeling shows the distribution of data quality assessments(QA) and quality controls(QC) surrounding the observation point. The measured turbulent flux data at the NPCE-BJ site were highly representative of the target land-use type. The target surface contributed more to the fluxes under unstable conditions than under stable conditions. The main wind directions(180° and 210°) with the highest data density showed flux contributions reaching 100%, even under stable conditions. The lowest flux contributions were found in sectors with low data density, e.g., 90.4% in the 360° sector under stable conditions during the ASM season. Lastly, a surface energy water balance(SEWAB) model was used to gap-fill any absent or corrected turbulence data. The potential simulation error was also explored in this study. The Nash-Sutcliffe model efficiency coefficients(NSEs) of the observed fluxes with the SEWAB model runs were 0.78 for sensible heat flux and 0.63 for latent heat flux during the ASM season, but unrealistic values of-0.9 for latent heat flux during the post-monsoon period. 展开更多
关键词 turbulent ENERGY flux Asian summer MONSOON GAP-FILLING surface ENERGY water balance model centralTibetan PLATEAU
下载PDF
An off-line simulation of land surface processes over the northern Tibetan Plateau 被引量:2
10
作者 MinHong Song yaoming ma +2 位作者 Yu Zhang WeiQiang ma SiQiong Luo 《Research in Cold and Arid Regions》 CSCD 2014年第3期236-246,共11页
In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to A... In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to April 2004, using the Noah Land Surface Model(Noah LSM) and observed data from the CAMP/Tibet experiment. The observed data were necessarily corrected and the number of soil layers in the Noah LSM was changed from 4 to 10 to enable this off-line simulation and analysis. The main conclusions are as follows: the Noah LSM performed well on the northern Tibetan Plateau. The simulated net radiation, upward longwave radiation, and upward shortwave radiation demonstrated the same remarkable annual and seasonal variation as the observed data, especially the upward longwave radiation. The simulated soil temperatures were acceptably close to the observed temperatures, especially in the shallow soil layers. The simulated freezing and melting processes were shown to start from the surface soil layer and spread down to the deep soil layers, but they took longer than the observed processes. However, Noah LSM did not adequately simulate the soil moisture. Therefore, additional high-quality, long-term observations of land surface–atmosphere processes over the Tibetan Plateau will be a key factor in proper adjustments of the model parameters in the future. 展开更多
关键词 青藏高原北部 离线模拟 陆面过程 长波辐射 土壤温度 LSM 陆面模式 离线仿真
下载PDF
Strengthening the three-dimensional comprehensive observation system of multi-layer interaction on the Tibetan Plateau to cope with the warming and wetting trend 被引量:1
11
作者 yaoming ma Binbin Wang +5 位作者 Xuelong Chen Lei Zhong Zeyong Hu Weiqiang ma Cunbo Han maoshan Li 《Atmospheric and Oceanic Science Letters》 CSCD 2022年第4期67-71,共5页
青藏高原的水循环变化对于高原及其下游区域人类的生产生活具有举足轻重的影响.在高原暖湿化的背景下,其水文循环加快,极端天气和自然灾害事件概率增大,比如,雪灾,洪水,滑坡,泥石流,冰崩在山区频发.因此,如何准确的估算青藏高原水循环... 青藏高原的水循环变化对于高原及其下游区域人类的生产生活具有举足轻重的影响.在高原暖湿化的背景下,其水文循环加快,极端天气和自然灾害事件概率增大,比如,雪灾,洪水,滑坡,泥石流,冰崩在山区频发.因此,如何准确的估算青藏高原水循环各分量的大小及变化幅度是评估高原环境变化影响亟需解决的科学问题.根据水在各圈层间转换过程,我们提出了建立第三极地区(尤其是复杂山区)的三维立体多圈层地气相互作用综合观测系统(包括涡动相关系统,行星边界层塔,微波辐射计,风廓线仪和无线电探空系统观测的风温湿廓线及云雨雷达等)的紧迫性和具体方案,进而为研究青藏高原环境变化和山区灾害预测服务. 展开更多
关键词 高原变暖变湿 水文循环 三维立体 多圈层相互作用综合观测系统 山区灾害应对 青藏高原
下载PDF
Comparison of Different Generation Mechanisms of Free Convection between Two Stations on the Tibetan Plateau
12
作者 Lang ZHANG yaoming ma +1 位作者 Weiqiang ma Binbin WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第9期1137-1144,共8页
Based on high-quality data from eddy covariance measurements at the Qomolangma Monitoring and Research Station for Atmosphere and Environment(QOMS) and the Southeast Tibet Monitoring and Research Station for Environme... Based on high-quality data from eddy covariance measurements at the Qomolangma Monitoring and Research Station for Atmosphere and Environment(QOMS) and the Southeast Tibet Monitoring and Research Station for Environment(SETS),near-ground free convection conditions(FCCs) and their characteristics are investigated. At QOMS, strong thermal effects accompanied by lower wind speeds can easily trigger the occurrence of FCCs. The change of circulation from prevailing katabatic glacier winds to prevailing upslope winds and the oscillation of upslope winds due to cloud cover are the two main causes of decreases in wind speed at QOMS. The analysis of results from SETS shows that the most important trigger mechanism of FCCs is strong solar heating. Turbulence structural analysis using wavelet transform indicates that lowerfrequency turbulence near the ground emerges from the detected FCCs both at QOMS and at SETS. It should be noted that the heterogeneous underlying surface at SETS creates large-scale turbulence during periods without the occurrence of FCCs. Regarding datasets of all seasons, the distribution of FCCs presents different characteristics during monsoonal and non-monsoonal periods. 展开更多
关键词 车站 机制 对流 传送 免费 西藏 高原 FCC
下载PDF
Improved Parameterization of Snow Albedo in WRF+Noah:Methodology Based on a Severe Snow Event on the Tibetan Plateau
13
作者 Lian LIU massimo MENENTI +1 位作者 yaoming ma Weiqiang ma 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第7期1079-1102,共24页
Snowfall and the subsequent evolution of the snowpack have a large effect on the surface energy balance and water cycle of the Tibetan Plateau(TP).The effects of snow cover can be represented by the WRF coupled with a... Snowfall and the subsequent evolution of the snowpack have a large effect on the surface energy balance and water cycle of the Tibetan Plateau(TP).The effects of snow cover can be represented by the WRF coupled with a land surface scheme.The widely used Noah scheme is computationally efficient,but its poor representation of albedo needs considerable improvement.In this study,an improved albedo scheme is developed using a satellite-retrieved albedo that takes snow depth and age into account.Numerical experiments were then conducted to simulate a severe snow event in March 2017.The performance of the coupled WRF/Noah model,which implemented the improved albedo scheme,is compared against the model’s performance using the default Noah albedo scheme and against the coupled WRF/CLM that applied CLM albedo scheme.When the improved albedo scheme is implemented,the albedo overestimation in the southeastern TP is reduced,reducing the RMSE of the air temperature by 0.7°C.The improved albedo scheme also attains the highest correlation between the satellite-derived and the model-estimated albedo,which provides for a realistic representation of both the snow water equivalent(SWE)spatial distribution in the heavy snowbelt(SWE>6 mm)and the maximum SWE in the eastern TP.The underestimated albedo in the coupled WRF/CLM leads to underestimating the regional maximum SWE and a consequent failure to estimate SWE in the heavy snowbelt accurately.Our study demonstrates the feasibility of improving the Noah albedo scheme and provides a theoretical reference for researchers aiming to improve albedo schemes further. 展开更多
关键词 WRF MODIS severe snowfall albedo scheme SWE Tibetan Plateau
下载PDF
Determination of Land Surface Heat Fluxes at Different Temporal Scales over the Tibetan Plateau
14
作者 yaoming ma Lei ZHONG +1 位作者 Weiqiang ma Cunbo HAN 《Journal of Geodesy and Geoinformation Science》 2021年第1期144-152,共9页
Surface energy budget components(such as net radiation flux,sensible heat flux,latent heat flux and soil heat flux)at multiple temporal scales have significant meaning for understanding the energy and water cycle over... Surface energy budget components(such as net radiation flux,sensible heat flux,latent heat flux and soil heat flux)at multiple temporal scales have significant meaning for understanding the energy and water cycle over the Tibetan Plateau(TP).In the framework of ESA-MOST Dragon Programme 4,the surface energy balance system(SEBS)was tested and used to derive surface heat fluxes at different temporal scales over the TP by a combination use of geostationary satellite(FY-2 C)data,polar orbiting satellite(SPOT/VGT,Terra/MODIS)data and ITPCAS forcing data.The validation results show there is a good agreement between derived heat fluxes and in situ measurements from Third Pole Environment Observation and Research Platform(TPEORP),which means the feasibility to derive surface heat fluxes over heterogeneous landscapes by a combination use of geostationary and polar orbiting satellite data in SEBS.The diurnal,seasonal and inter-annual variation characteristics were also clearly identified through analyses of derived turbulent fluxes. 展开更多
关键词 sensible heat flux latent heat flux PARAMETERIZATION the Tibetan Plateau
下载PDF
Study on the atmospheric heat engine efficiency and heat source characteristics of the Qinghai-Tibet Plateau in summer
15
作者 Yujie LI Xiaoqing GAO +5 位作者 yaoming ma Zeyong HU Zhenchao LI Liwei YANG Xiao JIN Xiyin ZHOU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第1期117-133,共17页
There are many types of atmospheric heat engines in land-air systems.The accurate definition,calculation and interpretation of the efficiency of atmospheric heat engines are key to understanding energy transfer and tr... There are many types of atmospheric heat engines in land-air systems.The accurate definition,calculation and interpretation of the efficiency of atmospheric heat engines are key to understanding energy transfer and transformation of landair systems.The atmosphere over the Qinghai-Tibet Plateau(QTP)in summer can be regarded as a positive heat engine.The study of the heat engine efficiency is helpful to better understand land-air interaction and thermal-dynamic processes on the QTP.It also provides a new perspective to explain the impact of the QTP on the climate of China,East Asia and even the world.In this paper,we used MOD08 and ERA5 reanalysis data to calculate the atmospheric heat engine efficiency,surface heat source and atmospheric heat source on the QTP in summer(May to September)from 2000 to 2020.The average atmospheric heat engine efficiency on the QTP in summer from 2000 to 2020 varies between 1.2%and 1.5%,which is less than 1.6%;the heat engine efficiency in summer is higher than that in June,July and August;the Qaidam Basin is the region with the highest atmospheric heat engine efficiency,followed by the western QTP.The mean surface heat source on the QTP in summer from 2000 to 2020 is 96.0 W m^(−2),the atmospheric heat source is 90.7 W m^(−2),and the release of precipitation condensation latent heat is the most important component of the atmospheric heat source on the QTP in summer.There is a strong and significant positive correlation between the atmospheric heat engine efficiency and the surface heat source on the QTP in summer.The precipitation condensation latent heat is the most important component of the atmospheric heat source in summer and can reflect the precipitation process.There is a strong and significant negative correlation between the atmospheric heat engine efficiency and the atmospheric heat source on the QTP in summer. 展开更多
关键词 Qinghai-Tibet Plateau Climate change Land-air system Atmospheric heat engine Heat source on the Qinghai-Tibet Plateau
原文传递
The Tibetan Plateau Surface–Atmosphere Coupling System and Its Weather and Climate Effects: The Third Tibetan Plateau Atmospheric Science Experiment 被引量:4
16
作者 Ping ZHAO Yueqing LI +26 位作者 Xueliang GUO Xiangde XU Yimin LIU Shihao TANG Wenming XIAO Chunxiang SHI yaoming ma Xing YU Huizhi LIU La JIA Yun CHEN Yanju LIU Jian LI Dabiao LUO Yunchang CAO Xiangdong ZHENG Junming CHEN An XIAO Fang YUAN Donghui CHEN Yang PANG Zhiqun HU Shengjun ZHANG Lixin DONG Juyang HU Shuai HAN Xiuji ZHOU 《Journal of Meteorological Research》 SCIE CSCD 2019年第3期375-399,共25页
The Tibetan Plateau(TP) is a key area affecting forecasts of weather and climate in China and occurrences of extreme weather and climate events over the world. The China Meteorological Administration, the National Nat... The Tibetan Plateau(TP) is a key area affecting forecasts of weather and climate in China and occurrences of extreme weather and climate events over the world. The China Meteorological Administration, the National Natural Science Foundation of China, and the Chinese Academy of Sciences jointly initiated the Third Tibetan Plateau Atmospheric Science Experiment(TIPEX-Ⅲ) in 2013, with an 8–10-yr implementation plan. Since its preliminary field measurements conducted in 2013, routine automatic sounding systems have been deployed at Shiquanhe, Gaize, and Shenzha stations in western TP, where no routine sounding observations were available previously. The observational networks for soil temperature and soil moisture in the central and western TP have also been established. Meanwhile, the plateau-scale and regional-scale boundary layer observations, cloud–precipitation microphysical observations with multiple radars and aircraft campaigns, and tropospheric–stratospheric air composition observations at multiple sites, were performed. The results so far show that the turbulent heat exchange coefficient and sensible heat flux are remarkably lower than the earlier estimations at grassland, meadow, and bare soil surfaces of the central and western TP. Climatologically, cumulus clouds over the main body of the TP might develop locally instead of originating from the cumulus clouds that propagate northward from South Asia. The TIPEX-Ⅲ observations up to now also reveal diurnal variations, macro-and microphysical characteristics, and water-phase transition mechanisms, of cumulus clouds at Naqu station. Moreover, TIPEX-Ⅲ related studies have proposed a maintenance mechanism responsible for the Asian "atmospheric water tower" and demonstrated the effects of the TP heating anomalies on African, Asian, and North American climates. Additionally, numerical modeling studies show that the Γ distribution of raindrop size is more suitable for depicting the TP raindrop characteristics compared to the M–P distribution, the overestimation of sensible heat flux can be reduced via modifying the heat transfer parameterization over the TP, and considering climatic signals in some key areas of the TP can improve the skill for rainfall forecast in the central and eastern parts of China. Furthermore, the TIPEX-Ⅲ has been promoting the technology in processing surface observations, soundings, and radar observations, improving the quality of satellite retrieved soil moisture and atmospheric water vapor content products as well as high-resolution gauge–radar–satellite merged rainfall products, and facilitating the meteorological monitoring, forecasting, and data sharing operations. 展开更多
关键词 TIBETAN PLATEAU field observation data processing WEATHER and climate numerical forecasting
原文传递
Estimation of 30 m land surface temperatures over the entire Tibetan Plateau based on Landsat-7 ETM+data and machine learning methods
17
作者 Xian Wang Lei Zhong yaoming ma 《International Journal of Digital Earth》 SCIE EI 2022年第1期1038-1055,共18页
Land surface temperature(LST)is an important parameter in land surface processes.Improving the accuracy of LST retrieval over the entire Tibetan Plateau(TP)using satellite images with high spatial resolution is an imp... Land surface temperature(LST)is an important parameter in land surface processes.Improving the accuracy of LST retrieval over the entire Tibetan Plateau(TP)using satellite images with high spatial resolution is an important and essential issue for studies of climate change on the TP.In this study,a random forest regression(RFR)model based on different land cover types and an improved generalized single-channel(SC)algorithm based on linear regression(LR)were proposed.Plateau-scale LST products with a 30 m spatial resolution from 2006 to 2017 were derived by 109,978 Landsat 7 Enhanced Thematic Mapper Plus images and the application of the Google Earth Engine.Validation between LST results obtained from different algorithms and in situ measurements from Tibetan observation and research platform showed that the root mean square errors of the LST results retrieved by the RFR and LR models were 1.890 and 2.767 K,respectively,which were smaller than that of the MODIS product(3.625 K)and the original SC method(5.836 K). 展开更多
关键词 Google Earth Engine remote sensing machine learning land surface temperature random forest
原文传递
TP-PROFILE: Monitoring the Thermodynamic Structure of the Troposphere over the Third Pole
18
作者 Xuelong CHEN Yajing LIU +6 位作者 yaoming ma Weiqiang ma Xiangde XU Xinghong CHENG Luhan LI Xin XU Binbin WANG 《Advances in Atmospheric Sciences》 SCIE CAS 2024年第6期1264-1277,共14页
Ground-based microwave radiometers(MWRs)operating in the K-and V-bands(20–60 GHz)can help us obtain temperature and humidity profiles in the troposphere.Aside from some soundings from local meteorological observatori... Ground-based microwave radiometers(MWRs)operating in the K-and V-bands(20–60 GHz)can help us obtain temperature and humidity profiles in the troposphere.Aside from some soundings from local meteorological observatories,the tropospheric atmosphere over the Tibetan Plateau(TP)has never been continuously observed.As part of the Chinese Second Tibetan Plateau Scientific Expedition and Research Program(STEP),the Tibetan Plateau Atmospheric Profile(TPPROFILE)project aims to construct a comprehensive MWR troposphere observation network to study the synoptic processes and environmental changes on the TP.This initiative has collected three years of data from the MWR network.This paper introduces the data information,the data quality,and data downloading.Some applications of the data obtained from these MWRs were also demonstrated.Our comparisons of MWR against the nearest radiosonde observation demonstrate that the TP-PROFILE MWR system is adequate for monitoring the thermal and moisture variability of the troposphere over the TP.The continuous temperature and moisture profiles derived from the MWR data provide a unique perspective on the evolution of the thermodynamic structure associated with the heating of the TP.The TP-PROFILE project reveals that the low-temporal resolution instruments are prone to large uncertainties in their vapor estimation in the mountain valleys on the TP. 展开更多
关键词 microwave radiometer thermodynamic structure vertical profile Tibetan Plateau
下载PDF
Variations of Surface Heat Fluxes over the Tibetan Plateau before and after the Onset of the South Asian Summer Monsoon during 1979–2016 被引量:3
19
作者 Yizhe HAN Weiqiang ma +1 位作者 yaoming ma Cuiyan SUN 《Journal of Meteorological Research》 SCIE CSCD 2019年第3期491-500,共10页
As the "Third Pole of the World," the Tibetan Plateau (TP) is an important thermal forcing to the South Asian summer monsoon (ASM) and even the global atmospheric circulation. In this paper, surface heat flu... As the "Third Pole of the World," the Tibetan Plateau (TP) is an important thermal forcing to the South Asian summer monsoon (ASM) and even the global atmospheric circulation. In this paper, surface heat fluxes from the ERA-Interim reanalysis data during March-October of 1979-2016 in the TP and its surrounding areas are examined and analyzed. The results are as follows.(1) From March to May (before the ASM onset), the main body of the TP is dominated by sensible heat flux, which increases rapidly with high (low) values in the west (east), while the change of latent heat flux is small but it increases with time.(2) From June to August (after the ASM onset), sensible heat flux over the TP decreases, while latent heat flux increases rapidly with high (low) values in the east (west).(3) From September to October (after the ASM withdrawal), sensible and latent heat fluxes are comparable to each other in strength, again with high (low) sensible heat flux in the west (east).(4) During 1979-2016, surface sensible heat flux in the whole TP shows a slightly downward trend, while latent heat flux shows an increasing trend. Specifically, in the western TP, sensible (latent) heat flux shows a weak decreasing (an increasing) trend;while in the eastern TP, sensible (latent) heat flux decreases (increases obviously). These variations are consistent with the observed warming and moistening in the TP region. The above results are useful for further analysis of the change of atmospheric heat sources and surface heat fluxes over the TP based on the data from the Third Tibetan Plateau Atmospheric Science Experiment (TIPEX-Ⅲ). 展开更多
关键词 TIBETAN PLATEAU (TP) REANALYSIS data sensible HEAT FLUX LATENT HEAT FLUX
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部