Over the past few decades,the enzyme-mimicking activity of metal-organic frameworks(MOFs)accompanied with struc-tural characteristics has aroused much attention.However,pure MOFs have low affinity with DNA.Here,iron-b...Over the past few decades,the enzyme-mimicking activity of metal-organic frameworks(MOFs)accompanied with struc-tural characteristics has aroused much attention.However,pure MOFs have low affinity with DNA.Here,iron-based MOFs with acidized carbon nanotubes(CNTs)via a simple hydrothermal process have been synthesized,named as MIL-88(NH_(2))-Fe@CNTs.CNTs can enhance the affinity between MOF and DNA,achieving flexible regulation of their catalytic activity benefiting from the strongπ−πstacking between CNTs and DNA.Meanwhile,in comparison with conventional iron-based MOFs,the addition of CNTs,which contributes to the acceleration of electron transfer,endowing as-prepared nanocomposites remarkably enhanced peroxidase-like activity to achieve an ultrasensitive detection of H_(2)O_(2) with the LOD of 17.64μg/L.Notably,the as-prepared nanocomposites with adsorbed DNA displayed excellent affinity towards both TMB(3,3′,5,5′-tetramethylbenzidine)substrates and H_(2)O_(2) as well as high catalytic velocity.On the basis of their switchable peroxidase-like activity regulated by different length or sequence of ssDNA,it is believed that our-prepared MOF-based nanomaterials would be promising for fabricating versatile and sensitive label-free colorimetric assays for diverse targets.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.21777012)the Program of Introducing Talents of Discipline to Universities(B13012)the Program for Changjiang Scholars and Innovative Research Team in University(IRT_13R05).
文摘Over the past few decades,the enzyme-mimicking activity of metal-organic frameworks(MOFs)accompanied with struc-tural characteristics has aroused much attention.However,pure MOFs have low affinity with DNA.Here,iron-based MOFs with acidized carbon nanotubes(CNTs)via a simple hydrothermal process have been synthesized,named as MIL-88(NH_(2))-Fe@CNTs.CNTs can enhance the affinity between MOF and DNA,achieving flexible regulation of their catalytic activity benefiting from the strongπ−πstacking between CNTs and DNA.Meanwhile,in comparison with conventional iron-based MOFs,the addition of CNTs,which contributes to the acceleration of electron transfer,endowing as-prepared nanocomposites remarkably enhanced peroxidase-like activity to achieve an ultrasensitive detection of H_(2)O_(2) with the LOD of 17.64μg/L.Notably,the as-prepared nanocomposites with adsorbed DNA displayed excellent affinity towards both TMB(3,3′,5,5′-tetramethylbenzidine)substrates and H_(2)O_(2) as well as high catalytic velocity.On the basis of their switchable peroxidase-like activity regulated by different length or sequence of ssDNA,it is believed that our-prepared MOF-based nanomaterials would be promising for fabricating versatile and sensitive label-free colorimetric assays for diverse targets.