Affected by cobalt(Co)supply bottlenecks and high costs,Co-free Ni-rich layered cathodes are considered the most promising option for economical and sustainable development of lithium-ion batteries(LIBs).Low-cost LiNi...Affected by cobalt(Co)supply bottlenecks and high costs,Co-free Ni-rich layered cathodes are considered the most promising option for economical and sustainable development of lithium-ion batteries(LIBs).Low-cost LiNi_(x)Al_(1-x)O_(2)(x≥0.9)cathode are rarely reported due to their chemo-mechanical instabilities and poor cycle life.Herein,we employ a strategy of Mg/W Li/Ni dualsite co-doping LiNi_(0.9)Al_(0.1)O_(2)(named as LNA90)cathodes to enhance cycling stability by modifying the crystal structure and forming a center radially aligned microstructure.The Mg/W co-doped LiNi_(0.9)Al_(0.1)O_(2)cathode(named as LNAMW)exhibits high capacity retention of 94.9%at 1 C and 3.0-4.5 V after 100 cycles with 22.0%increase over the pristine cathode LNA90 and maintains the intact particle morphology.Meanwhile,the cycling performance of LNAMW cathode exceeds that of most reported Ni-rich cathodes(Ni mol%>80%).Our work offers a straightforward,efficient,and scalable strategy for the future design of Cofree Ni-rich cathodes to facilitate the development of economical lithium-ion batteries.展开更多
基金The National Natural Science Foundation of China(No.52004116)the Major Science and Technology Special Program of Yunnan Province(No.202202AG050003)+2 种基金the Applied Basic Research Plan of Yunnan Province(Nos.202101AS070020,202201AT070184,202101BE070001-016,and 202001AU070039)the High-level Talent Introduction Scientific Research Start Project of KUST(No.20190015)the analysis and testing fund of Kunming University of Technology(No.2021M20202202144)are gratefully acknowledged.
文摘Affected by cobalt(Co)supply bottlenecks and high costs,Co-free Ni-rich layered cathodes are considered the most promising option for economical and sustainable development of lithium-ion batteries(LIBs).Low-cost LiNi_(x)Al_(1-x)O_(2)(x≥0.9)cathode are rarely reported due to their chemo-mechanical instabilities and poor cycle life.Herein,we employ a strategy of Mg/W Li/Ni dualsite co-doping LiNi_(0.9)Al_(0.1)O_(2)(named as LNA90)cathodes to enhance cycling stability by modifying the crystal structure and forming a center radially aligned microstructure.The Mg/W co-doped LiNi_(0.9)Al_(0.1)O_(2)cathode(named as LNAMW)exhibits high capacity retention of 94.9%at 1 C and 3.0-4.5 V after 100 cycles with 22.0%increase over the pristine cathode LNA90 and maintains the intact particle morphology.Meanwhile,the cycling performance of LNAMW cathode exceeds that of most reported Ni-rich cathodes(Ni mol%>80%).Our work offers a straightforward,efficient,and scalable strategy for the future design of Cofree Ni-rich cathodes to facilitate the development of economical lithium-ion batteries.