Recent studies have suggested that type lax supernovae(SNe lax) are likely to result from a weak deflagration explosion of a Chandrasekhar-mass white dwarf in a binary system with a helium(He)-star companion.Assuming ...Recent studies have suggested that type lax supernovae(SNe lax) are likely to result from a weak deflagration explosion of a Chandrasekhar-mass white dwarf in a binary system with a helium(He)-star companion.Assuming that most SNe Iax are produced from this scenario,in this work we extend our previous work on the threedimensional hydrodynamical simulation of ejecta-companion interaction by taking the orbital and spin velocities of the progenitor system into account.We then follow the post-impact evolution of a surviving He-star companion by using the one-dimensional stellar evolution code MESA.We aim to investigate the post-explosion rotation properties of a He-star companion in SNe Iax.We find that the He-star companion spins down after the impact due to the angular-momentum loss and expansion caused by the mass-stripping and shock heating during the interaction.This leads to the situation where the surface rotational speed of the surviving companion can drop to one-third of its pre-explosion value when it expands to a maximum radius a few years after the impact.Subsequently,the star shrinks and spins up again once the deposited energy is released.This spin-switching feature of the surviving He-star companions of SNe Iax may be useful for the identification of such objects in future observations.展开更多
基金supported by the National Key R&D Program of China (Nos. 2021YFA1600400, 2021YFA1600401)the National Natural Science Foundation of China (NSFC, Grant Nos. 11873016, 11973080, and 11733008)+2 种基金the Chinese Academy of Sciences, and Yunnan Province (Nos. 12090040, 12090043, 202001AW070007, 2019HA012, and 2017HC018)support from the Yunnan Ten Thousand Talents Plan–Young & Elite Talents Projectthe CAS “Light of West China” Program。
文摘Recent studies have suggested that type lax supernovae(SNe lax) are likely to result from a weak deflagration explosion of a Chandrasekhar-mass white dwarf in a binary system with a helium(He)-star companion.Assuming that most SNe Iax are produced from this scenario,in this work we extend our previous work on the threedimensional hydrodynamical simulation of ejecta-companion interaction by taking the orbital and spin velocities of the progenitor system into account.We then follow the post-impact evolution of a surviving He-star companion by using the one-dimensional stellar evolution code MESA.We aim to investigate the post-explosion rotation properties of a He-star companion in SNe Iax.We find that the He-star companion spins down after the impact due to the angular-momentum loss and expansion caused by the mass-stripping and shock heating during the interaction.This leads to the situation where the surface rotational speed of the surviving companion can drop to one-third of its pre-explosion value when it expands to a maximum radius a few years after the impact.Subsequently,the star shrinks and spins up again once the deposited energy is released.This spin-switching feature of the surviving He-star companions of SNe Iax may be useful for the identification of such objects in future observations.