We have developed a low-damage photolithography method for magnetically doped(Bi,Sb)_(2)Te_(3)quantum anomalous Hall(QAH) thin films incorporating an additional resist layer of poly(methyl methacrylate)(PMMA). By perf...We have developed a low-damage photolithography method for magnetically doped(Bi,Sb)_(2)Te_(3)quantum anomalous Hall(QAH) thin films incorporating an additional resist layer of poly(methyl methacrylate)(PMMA). By performing control experiments on the transport properties of five devices at varied gate voltages(V_(g)s), we revealed that the modified photolithography method enables fabricating QAH devices with the transport and magnetic properties unaffected by fabrication process. Our experiment represents a step towards the production of novel micro-structured electronic devices based on the dissipationless QAH chiral edge states.展开更多
[Objectives]This study was conducted to establish a method for the determination of aspartame in liquor by high performance liquid chromatography.[Methods]The liquor samples having volumes fixed with ultrapure water w...[Objectives]This study was conducted to establish a method for the determination of aspartame in liquor by high performance liquid chromatography.[Methods]The liquor samples having volumes fixed with ultrapure water were filtered by 0.22μm water phase,and then the content of aspartame in liquor was determined by high performance liquid chromatography using methanol(A)and ultrapure water(B)as mobile phase for isocratic elution.[Results]The results showed that a good linearity was obtained for the standard curve(R^(2)=99.98%)in the method,and its quantitative limit was 5.34 mg/kg.Its recovery was 91.26%,91.92%,and 90.55%,respectively.[Conclusions]The method has high sensitivity,high recovery and low quantitative limit,and it was a suitable method for the determination of aspartame in liquor.展开更多
By using the MOS-based model established in this paper, the physical process of photoelectron generation, transfer,and storage in the four-transistor active pixel sensor(4 T-APS) pixels can be simulated in SPICE envir...By using the MOS-based model established in this paper, the physical process of photoelectron generation, transfer,and storage in the four-transistor active pixel sensor(4 T-APS) pixels can be simulated in SPICE environment. The variable capacitance characteristics of double junctions in pinned photodiodes(PPDs) and the threshold voltage difference formed by channel nonuniform doping in transfer gates(TGs) are considered with this model. The charge transfer process of photogenerated electrons from PPDs to the floating diffusion(FD) is analyzed, and the function of nonuniform doping of TGs in suppressing charge injection back to PPDs is represented with the model. The optical and electrical characteristics of all devices in the pixel are effectively combined with the model. Moreover, the charge transfer efficiency and the voltage variation in PPD can be described with the model. Compared with the hybrid simulation in TCAD and the Verilog-A simulation in SPICE, this model has higher simulation efficiency and accuracy, respectively. The effectiveness of the MOS-based model is experimentally verified in a 3 μm test pixel designed in 0.11 μm CIS process.展开更多
As a sister compound of MnBi_(2)Te_(4),the highquality MnSb_(2)Te_(4) single crystals are grown via solid-state reaction where prolonged annealing and narrow temperature window play critical roles on account of its th...As a sister compound of MnBi_(2)Te_(4),the highquality MnSb_(2)Te_(4) single crystals are grown via solid-state reaction where prolonged annealing and narrow temperature window play critical roles on account of its thermal metastability.Single-crystal X-ray diffraction(SCXRD)analysis on MnSb_(2)Te_(4) illustrates a crystal model that is isostructural to MnBi_(2)Te_(4),consisting of Te-Sb-Te-Mn-Te-Sb-Te septuple layers(SLs)stacking in an ABC sequence.However,MnSb_(2)Te_(4) reveals a more pronounced cation intermixing in comparison with MnBi_(2)Te_(4),comprising 28.9(7)%Sb antisite defects on the Mn(3a)site and 19.3(6)%Mn antisite defects on the Sb(6c)site,which may give rise to novel magnetic properties in emerging layered MnBi_(2)Te_(4)-family materials.Unlike the antiferromagnetic(AFM)nature in MnBi_(2)Te_(4),MnSb_(2)Te_(4) exhibits a glassy magnetic ground state below 24 K and can be easily tuned to a ferromagnetic state under a weak applied magnetic field.Its magnetic hysteresis,anisotropy,and relaxation process are investigated in detail via static and dynamic magnetization measurements.Moreover,anomalous Hall effect as a p-type conductor is demonstrated with transport measurements.This work grants MnSb_(2)Te_(4) a possible access to the future exploration of exotic quantum physics by removing the odd/even layer number restraint in realizing quantum transport phenomena in intrinsic AFM MnBi_(2)Te_(4)-family materials,as a result of the crossover between its magnetism and potential topology arising from the Sb-Te layer.展开更多
基金supported by the National Key Research and Development Program of China (Grant No. 2018YFA0307100)the Basic Science Center Project of the National Natural Science Foundation of China (Grant No. 52388201)+4 种基金the National Natural Science Foundation of China (Grant Nos. 12274453 and 92065206)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302502)supported by Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF202204)supported by the New Cornerstone Science Foundation through the New Cornerstone Investigator Programthe XPLORER PRIZE。
文摘We have developed a low-damage photolithography method for magnetically doped(Bi,Sb)_(2)Te_(3)quantum anomalous Hall(QAH) thin films incorporating an additional resist layer of poly(methyl methacrylate)(PMMA). By performing control experiments on the transport properties of five devices at varied gate voltages(V_(g)s), we revealed that the modified photolithography method enables fabricating QAH devices with the transport and magnetic properties unaffected by fabrication process. Our experiment represents a step towards the production of novel micro-structured electronic devices based on the dissipationless QAH chiral edge states.
文摘[Objectives]This study was conducted to establish a method for the determination of aspartame in liquor by high performance liquid chromatography.[Methods]The liquor samples having volumes fixed with ultrapure water were filtered by 0.22μm water phase,and then the content of aspartame in liquor was determined by high performance liquid chromatography using methanol(A)and ultrapure water(B)as mobile phase for isocratic elution.[Results]The results showed that a good linearity was obtained for the standard curve(R^(2)=99.98%)in the method,and its quantitative limit was 5.34 mg/kg.Its recovery was 91.26%,91.92%,and 90.55%,respectively.[Conclusions]The method has high sensitivity,high recovery and low quantitative limit,and it was a suitable method for the determination of aspartame in liquor.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61874085)the Postdoctoral Research Funding Project of Shaanxi Province,China (Grant No. 2018BSHEDZZ41)。
文摘By using the MOS-based model established in this paper, the physical process of photoelectron generation, transfer,and storage in the four-transistor active pixel sensor(4 T-APS) pixels can be simulated in SPICE environment. The variable capacitance characteristics of double junctions in pinned photodiodes(PPDs) and the threshold voltage difference formed by channel nonuniform doping in transfer gates(TGs) are considered with this model. The charge transfer process of photogenerated electrons from PPDs to the floating diffusion(FD) is analyzed, and the function of nonuniform doping of TGs in suppressing charge injection back to PPDs is represented with the model. The optical and electrical characteristics of all devices in the pixel are effectively combined with the model. Moreover, the charge transfer efficiency and the voltage variation in PPD can be described with the model. Compared with the hybrid simulation in TCAD and the Verilog-A simulation in SPICE, this model has higher simulation efficiency and accuracy, respectively. The effectiveness of the MOS-based model is experimentally verified in a 3 μm test pixel designed in 0.11 μm CIS process.
基金supported by the Innovation Program for Quantum Science and Technology (2021ZD0302502)the National Key R&D Program of China (2018YFA0307100 and 2022YFA1403700)+4 种基金the National Natural Science Foundation of China (51991340, 21975140, 11925402, and 12274453)supported by Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (KF202204)supported by the Guangdong Province (2020KCXTD001 and 2016ZT06D348)Center for Computational Science and Engineering of SUSTechsupported by the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE
基金supported by the Basic Science Center Project of the National Natural Science Foundation of China(51788104)the Ministry of Science and Technology of China(2018YFA0307100)+1 种基金the National Natural Science Foundation of China(51991340 and 21975140)supported by the Beckman Young Investigator award。
文摘As a sister compound of MnBi_(2)Te_(4),the highquality MnSb_(2)Te_(4) single crystals are grown via solid-state reaction where prolonged annealing and narrow temperature window play critical roles on account of its thermal metastability.Single-crystal X-ray diffraction(SCXRD)analysis on MnSb_(2)Te_(4) illustrates a crystal model that is isostructural to MnBi_(2)Te_(4),consisting of Te-Sb-Te-Mn-Te-Sb-Te septuple layers(SLs)stacking in an ABC sequence.However,MnSb_(2)Te_(4) reveals a more pronounced cation intermixing in comparison with MnBi_(2)Te_(4),comprising 28.9(7)%Sb antisite defects on the Mn(3a)site and 19.3(6)%Mn antisite defects on the Sb(6c)site,which may give rise to novel magnetic properties in emerging layered MnBi_(2)Te_(4)-family materials.Unlike the antiferromagnetic(AFM)nature in MnBi_(2)Te_(4),MnSb_(2)Te_(4) exhibits a glassy magnetic ground state below 24 K and can be easily tuned to a ferromagnetic state under a weak applied magnetic field.Its magnetic hysteresis,anisotropy,and relaxation process are investigated in detail via static and dynamic magnetization measurements.Moreover,anomalous Hall effect as a p-type conductor is demonstrated with transport measurements.This work grants MnSb_(2)Te_(4) a possible access to the future exploration of exotic quantum physics by removing the odd/even layer number restraint in realizing quantum transport phenomena in intrinsic AFM MnBi_(2)Te_(4)-family materials,as a result of the crossover between its magnetism and potential topology arising from the Sb-Te layer.