期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effective ethanol-to-CO_(2) electrocatalysis at iridium-bismuth oxide featuring the impressive negative shifting of the working potential
1
作者 Ruilin Wei Yue Liu +2 位作者 Huazhong Ma Xingyu Ma yaoyue yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期23-31,I0002,共10页
Since low overpotential for the anodic ethanol oxidation reaction(EOR)can favor the higher output voltage and power of direct ethanol fuel cells(DEFCs),it is critical to design new EOR catalysts with efficient ethanol... Since low overpotential for the anodic ethanol oxidation reaction(EOR)can favor the higher output voltage and power of direct ethanol fuel cells(DEFCs),it is critical to design new EOR catalysts with efficient ethanol-to-CO_(2)activity at low applied potentials.Thereby,carbon-supported Ir-Bi_(2)O_(3)(Ir-Bi_(2)O_(3)/C)catalysts with highly dispersive bismuth oxide on the iridium surface are designed and prepared,which can merit splitting the ethanol C–C bond and promoting the oxidation of C1 intermediates at the bifunctional interfaces.The as-obtained Ir-Bi2O3/C catalysts show superior EOR mass activity of up to ca.2250 m A mgIr-1.Moreover,they exhibit the record lowest onset oxidation potentials(0.17–0.22 V vs.RHE)and the peak potential(ca.0.58 V vs.RHE),being 130–300 m V lower than the previous landmark noble metallic catalysts.Furthermore,an apparent C1 pathway faraday efficiency(FEC1)of 28%±5.9%at 0.5 V vs.RHE can be obtained at Ir-Bi_(2)O_(3)/C.This work might provide new insights into the new anodic EOR catalysts for increasing the power of DEFCs. 展开更多
关键词 EOR Low overpotential C1 selectivity IRIDIUM Bismuth oxide
下载PDF
Unraveling the role of iron on Ni-Fe alloy nanoparticles during the electrocatalytic ethanol-to-acetate process
2
作者 Junshan Li Luming Li +7 位作者 Xinyu Ma Jun Wang Jun Zhao Yu Zhang Ren He yaoyue yang Andreu Cabot Yongfa Zhu 《Nano Research》 SCIE EI CSCD 2024年第4期2328-2336,共9页
The anodic electrooxidation of ethanol to value-added acetate is an excellent example of replacing the oxygen evolution reaction to promote the cathodic hydrogen evolution reaction and save energy.Herein,we present a ... The anodic electrooxidation of ethanol to value-added acetate is an excellent example of replacing the oxygen evolution reaction to promote the cathodic hydrogen evolution reaction and save energy.Herein,we present a colloidal strategy to produce Ni-Fe bimetallic alloy nanoparticles(NPs)as efficient electrocatalysts for the electrooxidation of ethanol in alkaline media.Ni-Fe alloy NPs deliver a current density of 100 mA·cm^(-2) in a 1.0 M KOH solution containing 1.0 M ethanol merely at 1.5 V vs.reversible hydrogen electrode(RHE),well above the performance of other electrocatalysts in a similar system.Within continuous 10 h testing at this external potential,this electrode is able to produce an average of 0.49 mmol·cm^(-2)·h^(-1) of acetate with an ethanol-to-acetate Faradaic efficiency of 80%.A series of spectroscopy techniques are used to probe the electrocatalytic process and analyze the electrolyte.Additionally,density functional theory(DFT)calculations demonstrate that the iron in the alloy NPs significantly enhances the electroconductivity and electron transfer,shifts the rate-limiting step,and lowers the energy barrier during the ethanol-to-acetate reaction pathway. 展开更多
关键词 ELECTROCATALYSIS ethanol oxidation reaction alloy nanoparticle ACETATE BIOREFINERY
原文传递
Boosting CO_(2) electroreduction to formate via bismuth oxide clusters 被引量:1
3
作者 Xiaole Jiang Le Lin +4 位作者 Youwen Rong Rongtan Li Qike Jiang yaoyue yang Dunfeng Gao 《Nano Research》 SCIE EI CSCD 2023年第10期12050-12057,共8页
Supported metal(oxide)clusters,with both rich surface sites and high atom utilization efficiency,have shown improved activity and selectivity for many catalytic reactions over nanoparticle and single atom catalysts.Ye... Supported metal(oxide)clusters,with both rich surface sites and high atom utilization efficiency,have shown improved activity and selectivity for many catalytic reactions over nanoparticle and single atom catalysts.Yet,the role of cluster catalysts has been rarely reported in CO_(2)electroreduction reaction(CO_(2)RR),which is a promising route for converting CO_(2)to liquid fuels like formic acid with renewable electricity.Here we develop a bismuth oxide(BiOn)cluster catalyst for highly efficient CO_(2)RR to formate.The BiOn cluster catalyst exhibits excellent activity,selectivity,and stability towards formate production,with a formate Faradaic efficiency of over 90%at a current density up to 500 mA·cm^(−2)in an alkaline membrane electrode assembly electrolyzer,corresponding to a mass activity as high as 3,750 A·gBi−1.The electrolyzer with the BiOn cluster catalyst delivers a remarkable formate production rate of 0.56 mmol·min−1 at a high single-pass CO_(2)conversion of 44%.Density functional theory calculations indicate that Bi4O_(3)cluster is more favorable for stabilizing the HCOO^(*)intermediate than Bi(001)surface and single site BiC_(4)motif,rationalizing the improved formate production over the BiOn cluster catalyst.This work highlights the great importance of cluster catalysts in activity and selectivity control in electrocatalytic CO_(2)conversion. 展开更多
关键词 CO_(2)electroreduction reaction FORMATE bismuth oxide cluster catalyst membrane electrode assembly
原文传递
Unraveling and tuning the linear correlation between CH_(4) and C_(2) production rates in CO_(2) electroreduction 被引量:1
4
作者 Kunhao Liu Chao yang +8 位作者 Ruilin Wei Xingyu Ma Chen Peng Zhengzheng Liu yangshen Chen Yaqin Yan Miao Kan yaoyue yang Gengfeng Zheng 《Science Bulletin》 SCIE EI CSCD 2022年第10期1042-1048,M0004,共8页
Although many catalysts have been reported for the CO_(2)electroreduction to C_(1)or C_(2)chemicals,the insufficient understanding of fundamental correlations among different products still hinders the development of ... Although many catalysts have been reported for the CO_(2)electroreduction to C_(1)or C_(2)chemicals,the insufficient understanding of fundamental correlations among different products still hinders the development of universal catalyst design strategies.Herein,we first discover that the surface*CO coverage is stable over a wide potential range and reveal a linear correlation between the partial current densities of CH_(4)and C_(2)products in this potential range,also supported by the theoretical kinetic analysis.Based on the mechanism that*CHO is the common intermediate in the formation of both CH_(4)(*CHO→CH4)and C_(1)(*CHO+*CO→C_(2)),we then unravel that this linear correlation is universal and the slope can be varied by tuning the surface*H or*CO coverage to promote the selectivity of CH_(4)or C_(2)products,respectively.As proofs-of-concept,using carbon-coated Cu particles,the surface*H coverage can be increased to enhance CH_(4)production,presenting a high CO_(2)-to-CH_(4)Faradaic efficiency(FE_(CH_(4))~52%)and an outstanding CH_(4)partial current density of-337 m A cm;.On the other hand,using an Agdoped Cu catalyst,the CO_(2)RR selectivity is switched to the C_(2)pathway,with a substantially promoted FE;of 79%and a high partial current density of-421 m A cm;.Our discovery of tuning intermediate coverages suggests a powerful catalyst design strategy for different CO_(2)electroreduction pathways. 展开更多
关键词 Electrochemical CO_(2)reduction Copper catalyst Reaction pathway CO coverage Linear correlation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部