Dissolved organic matter(DOM)plays a vital role in promoting carbon and nutrient cycling.It is a food source for organisms and controls the migration and transformation of trace metals and other contaminants in aquati...Dissolved organic matter(DOM)plays a vital role in promoting carbon and nutrient cycling.It is a food source for organisms and controls the migration and transformation of trace metals and other contaminants in aquatic systems.The contributions of aquatic DOM to the environment and ecology of a system are closely related to its abundance and chemical structure.In this study,the chemical composition and binding properties of DOM in a hypersaline lake watershed were investigated for the fi rst time using dissolved organic carbon(DOC)analysis,absorption spectroscopy,Fourier transform infrared spectroscopy,pyrolysis-GC-MS(Py-GC-MS),and fl uorescence parallel factor(PARAFAC)analysis combined with Pb(II)titration techniques.The results showed that DOM from the tributaries that fl owed into the lake had a lower DOC content,higher molecular weight,and higher specifi c UV absorbance than the DOM in lake water.Protein-like fl uorophores were mainly found in tributary and lake surface water DOM(LSDOM)and humic-like substances were abundant in lake groundwater DOM(LGDOM).Using this multi-methodological approach,we found that the DOM from the hypersaline lake watershed was mainly from microbial origins,and consisted of aromatics,carbohydrates,and aliphatics.The results from quantitative analysis showed that DOM from the infl owing tributaries contained more aromatics,lower carbohydrates,and lower aliphatics than DOM in the lake.Monocyclic aromatic hydrocarbons and carbohydrates were more abundant in LSDOM than LGDOM.The results from the Pb(II)titration technique coupled with PARAFAC analysis suggested that PARAFAC-derived components had relatively low condition stability constants(log K_(M)<2).Of the two types of lake DOM,the LGDOM had a higher Pb(II)binding potential than the LSDOM.From this study we have improved our understanding of how DOM within a hypersaline lake watershed varies in its composition and potential to bind with metals.展开更多
Aristolochic acids(AAs) have long been considered as a potent carcinogen due to its nephrotoxicity. Aristolochic acid I(AAI) reacts with DNA to form covalent aristolactam(AL)-DNA adducts,leading to subsequent A to T t...Aristolochic acids(AAs) have long been considered as a potent carcinogen due to its nephrotoxicity. Aristolochic acid I(AAI) reacts with DNA to form covalent aristolactam(AL)-DNA adducts,leading to subsequent A to T transversion mutation, commonly referred as AA mutational signature. Previous research inferred that AAs were widely implicated in liver cancer throughout Asia. In this study, we explored whether AAs exposure was the main cause of liver cancer in the context of HBV infection in China's Mainland. Totally 1256 liver cancer samples were randomly retrieved from 3 medical centers and a refined bioanalytical method was used to detect AAI-DNA adducts. 5.10% of these samples could be identified as AAI positive exposure. Whole genome sequencing suggested 8.41% of 107 liver cancer patients exhibited the dominant AA mutational signature, indicating a relatively low overall AAI exposure rate. In animal models, long-term administration of AAI barely increased liver tumorigenesis in adult mice, opposite from its tumor-inducing role when subjected to infant mice. Furthermore, AAI induced dose-dependent accumulation of AA-DNA adduct in target organs in adult mice, with the most detected in kidney instead of liver. Taken together, our data indicate that AA exposure was not the major threat of liver cancer in adulthood.展开更多
MnO2-Al2O3 (MOAO) binary nanocomposite with a 1:3 MnO2 to Al2O3 molar ratio was synthesized by impregnation technique using mesoporous alumina (MA) precursor. The MOAO product consisted of MA and amorphous MnO2. ...MnO2-Al2O3 (MOAO) binary nanocomposite with a 1:3 MnO2 to Al2O3 molar ratio was synthesized by impregnation technique using mesoporous alumina (MA) precursor. The MOAO product consisted of MA and amorphous MnO2. The manganese valence in MOAO was +4, indicative of MnO2 being coated on the surface of MA during the impregnation process. MOAO had a large specific surface area (385.266 m^2/g) and wormhole-like mesoporous structure. The average pore size, which could be precisely controlled over the range of 3.4-4.1 nm. The optimum removal of fluoride was obtained when the initial pH was in the range of 4-10. The defluorination efficiency of MOAO was far superior to that of MA when the initial fluoride concentration exceeded 40 mg/L. The large surface area and bimodal porous structure of MOAO after coating MnO2 may be responsible for the high removal efficiency in the defluorination process.展开更多
基金Supported by the Natural Science Foundation of Qinghai Province(Nos.2020-ZJ-940Q,2014-ZJ-937Q)the West Light Foundation of the Chinese Academy of Sciences(No.E010GC09)the Youth Innovation Promotion Association CAS(No.E010GC15)。
文摘Dissolved organic matter(DOM)plays a vital role in promoting carbon and nutrient cycling.It is a food source for organisms and controls the migration and transformation of trace metals and other contaminants in aquatic systems.The contributions of aquatic DOM to the environment and ecology of a system are closely related to its abundance and chemical structure.In this study,the chemical composition and binding properties of DOM in a hypersaline lake watershed were investigated for the fi rst time using dissolved organic carbon(DOC)analysis,absorption spectroscopy,Fourier transform infrared spectroscopy,pyrolysis-GC-MS(Py-GC-MS),and fl uorescence parallel factor(PARAFAC)analysis combined with Pb(II)titration techniques.The results showed that DOM from the tributaries that fl owed into the lake had a lower DOC content,higher molecular weight,and higher specifi c UV absorbance than the DOM in lake water.Protein-like fl uorophores were mainly found in tributary and lake surface water DOM(LSDOM)and humic-like substances were abundant in lake groundwater DOM(LGDOM).Using this multi-methodological approach,we found that the DOM from the hypersaline lake watershed was mainly from microbial origins,and consisted of aromatics,carbohydrates,and aliphatics.The results from quantitative analysis showed that DOM from the infl owing tributaries contained more aromatics,lower carbohydrates,and lower aliphatics than DOM in the lake.Monocyclic aromatic hydrocarbons and carbohydrates were more abundant in LSDOM than LGDOM.The results from the Pb(II)titration technique coupled with PARAFAC analysis suggested that PARAFAC-derived components had relatively low condition stability constants(log K_(M)<2).Of the two types of lake DOM,the LGDOM had a higher Pb(II)binding potential than the LSDOM.From this study we have improved our understanding of how DOM within a hypersaline lake watershed varies in its composition and potential to bind with metals.
基金supported by National Major Scientific and Technological Special Project for “Significant New Drugs Development” (2018ZX09101002,2018ZX09101002-001-001,and 2018ZX09101002-001-002,China)sponsored by National Natural Science Foundation of China (81830054,91859205,81988101,81722034,and 81802878)+1 种基金Shanghai Pujiang Program (2019PJD059,China),Shanghai Sailing Program (18YF1400200,China)Key Discipline Project of Shanghai Municipal Education Commission (201901070007E00065,China)。
文摘Aristolochic acids(AAs) have long been considered as a potent carcinogen due to its nephrotoxicity. Aristolochic acid I(AAI) reacts with DNA to form covalent aristolactam(AL)-DNA adducts,leading to subsequent A to T transversion mutation, commonly referred as AA mutational signature. Previous research inferred that AAs were widely implicated in liver cancer throughout Asia. In this study, we explored whether AAs exposure was the main cause of liver cancer in the context of HBV infection in China's Mainland. Totally 1256 liver cancer samples were randomly retrieved from 3 medical centers and a refined bioanalytical method was used to detect AAI-DNA adducts. 5.10% of these samples could be identified as AAI positive exposure. Whole genome sequencing suggested 8.41% of 107 liver cancer patients exhibited the dominant AA mutational signature, indicating a relatively low overall AAI exposure rate. In animal models, long-term administration of AAI barely increased liver tumorigenesis in adult mice, opposite from its tumor-inducing role when subjected to infant mice. Furthermore, AAI induced dose-dependent accumulation of AA-DNA adduct in target organs in adult mice, with the most detected in kidney instead of liver. Taken together, our data indicate that AA exposure was not the major threat of liver cancer in adulthood.
文摘MnO2-Al2O3 (MOAO) binary nanocomposite with a 1:3 MnO2 to Al2O3 molar ratio was synthesized by impregnation technique using mesoporous alumina (MA) precursor. The MOAO product consisted of MA and amorphous MnO2. The manganese valence in MOAO was +4, indicative of MnO2 being coated on the surface of MA during the impregnation process. MOAO had a large specific surface area (385.266 m^2/g) and wormhole-like mesoporous structure. The average pore size, which could be precisely controlled over the range of 3.4-4.1 nm. The optimum removal of fluoride was obtained when the initial pH was in the range of 4-10. The defluorination efficiency of MOAO was far superior to that of MA when the initial fluoride concentration exceeded 40 mg/L. The large surface area and bimodal porous structure of MOAO after coating MnO2 may be responsible for the high removal efficiency in the defluorination process.