Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological...Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological property of ZnO nanoinks resulted in unevenness and looseness of the gravure-printed ZnO interfacial layer.Here we propose a strategy to manipulate the macroscopic and microscopic of the gravure-printed ZnO films through using mixed solvent and poly(vinylpyrrolidone)(PVP)additive.The regulation of drying speed effectively manipulates the droplets fusion and leveling process and eliminates the printing ribbing structure in the macroscopic morphology.The additive of PVP effectively regulates the rheological property and improves the microscopic compactness of the films.Following this method,large-area ZnO∶PVP films(28×9 cm^(2))with excellent uniformity,compactness,conductivity,and bending durability were fabricated.The power conversion efficiencies of FOSCs with gravure-printed AgNWs and ZnO∶PVP films reached 14.34%and 17.07%for the 1 cm^(2)PM6:Y6 and PM6∶L8-BO flexible devices.The efficiency of 17.07%is the highest value to date for the 1 cm^(2)FOSCs.The use of mixed solvent and PVP addition also significantly enlarged the printing window of ZnO ink,ensuring high-quality printed thin films with thicknesses varying from 30 to 100 nm.展开更多
卷对卷(R2R)凹版印刷具有高的边缘分辨率、可图案化、高加工速度等优势,是制备大面积柔性有机太阳能电池(FOSCs)的一种可行技术.有机光活性层的薄膜质量是决定有机太阳能电池器件性能的关键.对于凹版印刷过程而言,墨水的转移是影响印刷...卷对卷(R2R)凹版印刷具有高的边缘分辨率、可图案化、高加工速度等优势,是制备大面积柔性有机太阳能电池(FOSCs)的一种可行技术.有机光活性层的薄膜质量是决定有机太阳能电池器件性能的关键.对于凹版印刷过程而言,墨水的转移是影响印刷薄膜厚度和质量的关键.本文深入研究了有机光活性层的墨水粘度对墨水转移率和薄膜缺陷的影响.我们开发了紫外可见光谱法,量化凹版印刷过程中墨水的转移率.通过对墨水的流变行为分析、流体动力学模拟和实验验证,深入研究了油墨粘度与油墨转移率、膜厚和膜均匀性之间的关系.结果表明,油墨粘度约为25 m Pa·s是R2R凹版印刷有机光活性层薄膜的适合粘度.通过对油墨配方的优化,我们制备了全R2R印刷FOSCs,其中1 cm^(2);电池的效率超过12%.展开更多
Large-area AgNWs electrodes(25 cm×10 cm)were fabricated through roll-to-roll printing on the polyvinyl alcohol(PVA)modified water and oxygen barrier substrate.The modification of the barrier film with PVA improve...Large-area AgNWs electrodes(25 cm×10 cm)were fabricated through roll-to-roll printing on the polyvinyl alcohol(PVA)modified water and oxygen barrier substrate.The modification of the barrier film with PVA improved the wettability of silver nanowires on the barrier films and led to the formation of homogenous large-area AgNWs networks.The mechanical flexibility,especially the adhesion force between the silver electrode and the barrier film substrate was dramatically improved through PVA modification.The efficiency of 13.51%for the flexible OSCs with an area of 0.64 cm2 was achieved based on the PET/barrier film/PVA/AgNWs electrode.The long-term stability showed the flexible OSCs based on the PET/barrier film/PVA/AgNWs electrode have a significantly improved stability relative to the device on PET/AgNWs electrode,and comparable air stability as the rigid device with glass/ITO device.The unencapsulated devices maintained nearly 50%of the original efficiency after storage for 600 h in air.After a simple top encapsulation,the flexible devices remained at 60%of the initial efficiency after 2000 h in the air.Therefore,the flexible AgNWs electrode based on the barrier film would have the potential to improve the air storage stability of organic flexible solar cells.展开更多
基金supported by the National Natural Science Foundation of China(22135001)Youth Innovation Promotion Association(2019317)+2 种基金the Young Cross Team Project of CAS(JCTD-2021-14)CAS-CSIRO joint project of Chinese Academy of Sciences(121E32KYSB20190021)Vacuum Interconnected Nanotech Workstation,Suzhou Institute of Nano-Tech and Nano-Bionics of Chinese Academy of Sciences(CAS)
文摘Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological property of ZnO nanoinks resulted in unevenness and looseness of the gravure-printed ZnO interfacial layer.Here we propose a strategy to manipulate the macroscopic and microscopic of the gravure-printed ZnO films through using mixed solvent and poly(vinylpyrrolidone)(PVP)additive.The regulation of drying speed effectively manipulates the droplets fusion and leveling process and eliminates the printing ribbing structure in the macroscopic morphology.The additive of PVP effectively regulates the rheological property and improves the microscopic compactness of the films.Following this method,large-area ZnO∶PVP films(28×9 cm^(2))with excellent uniformity,compactness,conductivity,and bending durability were fabricated.The power conversion efficiencies of FOSCs with gravure-printed AgNWs and ZnO∶PVP films reached 14.34%and 17.07%for the 1 cm^(2)PM6:Y6 and PM6∶L8-BO flexible devices.The efficiency of 17.07%is the highest value to date for the 1 cm^(2)FOSCs.The use of mixed solvent and PVP addition also significantly enlarged the printing window of ZnO ink,ensuring high-quality printed thin films with thicknesses varying from 30 to 100 nm.
基金supported by the National Natural Science Foundation of China(22135001)Young Cross Team Project of CAS(JCTD-2021-14)+1 种基金“Dual Carbon”Science and Technology Innovation of Jiangsu Province(Industrial Prospect and Key Technology Research Program)(BE2022021)Vacuum Interconnected Nanotech Workstation,Suzhou Institute of Nano-Tech and Nano-Bionics,and Chinese Academy of Sciences(CAS)。
文摘卷对卷(R2R)凹版印刷具有高的边缘分辨率、可图案化、高加工速度等优势,是制备大面积柔性有机太阳能电池(FOSCs)的一种可行技术.有机光活性层的薄膜质量是决定有机太阳能电池器件性能的关键.对于凹版印刷过程而言,墨水的转移是影响印刷薄膜厚度和质量的关键.本文深入研究了有机光活性层的墨水粘度对墨水转移率和薄膜缺陷的影响.我们开发了紫外可见光谱法,量化凹版印刷过程中墨水的转移率.通过对墨水的流变行为分析、流体动力学模拟和实验验证,深入研究了油墨粘度与油墨转移率、膜厚和膜均匀性之间的关系.结果表明,油墨粘度约为25 m Pa·s是R2R凹版印刷有机光活性层薄膜的适合粘度.通过对油墨配方的优化,我们制备了全R2R印刷FOSCs,其中1 cm^(2);电池的效率超过12%.
基金supported by the National Natural Science Foundation of China(22135001)Youth Innovation Promotion Association(2019317)+4 种基金Young Cross Team Project of CAS(No.JCTD-2021-14)“Dual Carbon"Science and Technology Innovation of Jiangsu province(Industrial Prospect and Key Technology Research Program)(BE2022021)Suzhou Science and Technology Program(ST202219)CAS Special Research Assistant(SRA)Program of Suzhou Institute of Nano-Tech and Nano-Bionics(E355130101)grateful for the technical support for Jiangsu Funding Program for Excellent Postdoctoral Talent,Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(A2107).
文摘Large-area AgNWs electrodes(25 cm×10 cm)were fabricated through roll-to-roll printing on the polyvinyl alcohol(PVA)modified water and oxygen barrier substrate.The modification of the barrier film with PVA improved the wettability of silver nanowires on the barrier films and led to the formation of homogenous large-area AgNWs networks.The mechanical flexibility,especially the adhesion force between the silver electrode and the barrier film substrate was dramatically improved through PVA modification.The efficiency of 13.51%for the flexible OSCs with an area of 0.64 cm2 was achieved based on the PET/barrier film/PVA/AgNWs electrode.The long-term stability showed the flexible OSCs based on the PET/barrier film/PVA/AgNWs electrode have a significantly improved stability relative to the device on PET/AgNWs electrode,and comparable air stability as the rigid device with glass/ITO device.The unencapsulated devices maintained nearly 50%of the original efficiency after storage for 600 h in air.After a simple top encapsulation,the flexible devices remained at 60%of the initial efficiency after 2000 h in the air.Therefore,the flexible AgNWs electrode based on the barrier film would have the potential to improve the air storage stability of organic flexible solar cells.