Thermal barrier coatings (TBC) have been improved for the engine applications. During working process of the engine, components were subjected to thermal stresses. For simulating thermally stressed engine parts, dis...Thermal barrier coatings (TBC) have been improved for the engine applications. During working process of the engine, components were subjected to thermal stresses. For simulating thermally stressed engine parts, disc specimen was objected to airflow at the temperatures about 1,000℃. In this study, finite element structural and thermal analyses were carried out on both uncoated (without coating) and ceramic-coated disc specimen using ANSYS code. A 150 micron super alloy bond coating (NiCrAIY) was first applied to the specimen. Then, the disc specimen was covered by 350 micron thickness of Mullit (3Al2O3.2SiO2) as a top coating. These analysis were performed for detecting the possible thermally problem areas. The disc's thermal stressed problematic areas were determined by the finite element analysis was helpful for improving the geometry and TBC.展开更多
文摘Thermal barrier coatings (TBC) have been improved for the engine applications. During working process of the engine, components were subjected to thermal stresses. For simulating thermally stressed engine parts, disc specimen was objected to airflow at the temperatures about 1,000℃. In this study, finite element structural and thermal analyses were carried out on both uncoated (without coating) and ceramic-coated disc specimen using ANSYS code. A 150 micron super alloy bond coating (NiCrAIY) was first applied to the specimen. Then, the disc specimen was covered by 350 micron thickness of Mullit (3Al2O3.2SiO2) as a top coating. These analysis were performed for detecting the possible thermally problem areas. The disc's thermal stressed problematic areas were determined by the finite element analysis was helpful for improving the geometry and TBC.