Staged combustion of biomass is the most suitable thermo-chemical conversion for achieving lower gaseous emissions and higher fuel conversion rates.In a staged fixed bed combustion of biomass,combustion air is supplie...Staged combustion of biomass is the most suitable thermo-chemical conversion for achieving lower gaseous emissions and higher fuel conversion rates.In a staged fixed bed combustion of biomass,combustion air is supplied in two stages.In the first stage,primary air is provided below the fuel,whereas in the later stage,secondary air is supplied in the freeboard region.The available literature on the effects of air staging(secondary air location) at a constant primary air flow rate on combustion characteristics in a batch-type fixed bed combustor is limited and hence warrants further investigations.This study resolves the effect of air staging,by varying the location of secondary air in the freeboard at five secondary to total air ratios in a batch-type fixed bed combustor.Results are reported for the effects of these controlled parameters on fuel conversion rate,overall gaseous emissions(CO_(2),CO and NO_x) and temperature distributions.The fuel used throughout was densified hardwood pellets.Results show that a primary freeboard length(distance between fuel bed top and secondary air injection) of200 mm has higher fuel conversion rates and temperatures as well as lower CO emissions,at a secondary to total air ratio of 0.75 as compared to primary freeboard length of 300 mm.However,NO_x emissions were found to be lower for a primary freeboard length of 300 mm as compared to 200 mm.An increase in secondary to total air ratio from 0.33 to 0.75 resulted in higher freeboard temperatures and lower CO as well as NO_x emissions.The outcomes of this study will be helpful in the effective design of commercial scale biomass combustors for more efficient and environmentally friendly combustion.展开更多
Infrared thermography,velocity and impingement pressure measurements alongside numerical modelling are used in this study to resolve(heated)surface temperature distributions of turbulent swirling impinging jets for tw...Infrared thermography,velocity and impingement pressure measurements alongside numerical modelling are used in this study to resolve(heated)surface temperature distributions of turbulent swirling impinging jets for two Reynolds numbers(Re=11600 and 24600).Whilst building upon earlier discoveries for this same geometry,this paper provides three new contributions:(1)identifying the role of impingement distance(H/D)as a deciding factor in the trade-off between more efficient heat transfer(at high swirl numbers)and achieving better substrate temperature uniformity(lower gradients),(2)developing correlations to predict Nusselt number for swirling and non-swirling cooling jets,and(3)predicting the underlying mixing field in these jets and its interplay with the thermal distributions resolved.Results indicate substrate temperature uniformity varies based on H/D and swirl intensity(S)with a significant level of thermal non-uniformity occurring in near-field impingement(H/D=1)at stronger swirl(S=0.59 and 0.74).Four correlations describing the effects of S,Re,and H on the average heat transfer and stagnation heat transfer are developed and yield accuracies of 8%and 12%,respectively.Flow recirculation near the impingement surface is predicted at H/D=1 for stronger swirl jets which disappears at other substrate distances.The peak wall shear stress reduces and the flow impingement becomes radially wider at higher H/D and S.Stronger turbulence or eddy viscosity regions for non-swirling jets(S=0)are predicted in the shear layer and entrainment regions at H/D=1,but such turbulence is confined to the impingement and wall jet regions for strongly swirling flows.展开更多
文摘Staged combustion of biomass is the most suitable thermo-chemical conversion for achieving lower gaseous emissions and higher fuel conversion rates.In a staged fixed bed combustion of biomass,combustion air is supplied in two stages.In the first stage,primary air is provided below the fuel,whereas in the later stage,secondary air is supplied in the freeboard region.The available literature on the effects of air staging(secondary air location) at a constant primary air flow rate on combustion characteristics in a batch-type fixed bed combustor is limited and hence warrants further investigations.This study resolves the effect of air staging,by varying the location of secondary air in the freeboard at five secondary to total air ratios in a batch-type fixed bed combustor.Results are reported for the effects of these controlled parameters on fuel conversion rate,overall gaseous emissions(CO_(2),CO and NO_x) and temperature distributions.The fuel used throughout was densified hardwood pellets.Results show that a primary freeboard length(distance between fuel bed top and secondary air injection) of200 mm has higher fuel conversion rates and temperatures as well as lower CO emissions,at a secondary to total air ratio of 0.75 as compared to primary freeboard length of 300 mm.However,NO_x emissions were found to be lower for a primary freeboard length of 300 mm as compared to 200 mm.An increase in secondary to total air ratio from 0.33 to 0.75 resulted in higher freeboard temperatures and lower CO as well as NO_x emissions.The outcomes of this study will be helpful in the effective design of commercial scale biomass combustors for more efficient and environmentally friendly combustion.
文摘Infrared thermography,velocity and impingement pressure measurements alongside numerical modelling are used in this study to resolve(heated)surface temperature distributions of turbulent swirling impinging jets for two Reynolds numbers(Re=11600 and 24600).Whilst building upon earlier discoveries for this same geometry,this paper provides three new contributions:(1)identifying the role of impingement distance(H/D)as a deciding factor in the trade-off between more efficient heat transfer(at high swirl numbers)and achieving better substrate temperature uniformity(lower gradients),(2)developing correlations to predict Nusselt number for swirling and non-swirling cooling jets,and(3)predicting the underlying mixing field in these jets and its interplay with the thermal distributions resolved.Results indicate substrate temperature uniformity varies based on H/D and swirl intensity(S)with a significant level of thermal non-uniformity occurring in near-field impingement(H/D=1)at stronger swirl(S=0.59 and 0.74).Four correlations describing the effects of S,Re,and H on the average heat transfer and stagnation heat transfer are developed and yield accuracies of 8%and 12%,respectively.Flow recirculation near the impingement surface is predicted at H/D=1 for stronger swirl jets which disappears at other substrate distances.The peak wall shear stress reduces and the flow impingement becomes radially wider at higher H/D and S.Stronger turbulence or eddy viscosity regions for non-swirling jets(S=0)are predicted in the shear layer and entrainment regions at H/D=1,but such turbulence is confined to the impingement and wall jet regions for strongly swirling flows.