期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Service life prediction of fly ash concrete using an artificial neural network 被引量:1
1
作者 yasmina kellouche Mohamed GHRICI Bakhta BOUKHATEM 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第3期793-805,共13页
Carbonation is one of the most aggressive phenomena affecting reinforced concrete structures and causing their degradation over time.Once reinforcement is altered by carbonation,the structure will no longer fulfill se... Carbonation is one of the most aggressive phenomena affecting reinforced concrete structures and causing their degradation over time.Once reinforcement is altered by carbonation,the structure will no longer fulfill service requirements.For this purpose,the present work estimates the lifetime of fly ash concrete by developing a carbonation depth prediction model that uses an artificial neural network technique.A collection of 300 data points was made from experimental results available in the published literature.Backpropagation training of a three-layer perceptron was selected for the calculation of weights and biases of the network to reach the desired performance.Six parameters affecting carbonation were used as input neurons:binder content,fly ash substitution rate,water/binder ratio,CO_(2)concentration,relative humidity,and concrete age.Moreover,experimental validation carried out for the developed model shows that the artificial neural network has strong potential as a feasible tool to accurately predict the carbonation depth of fly ash concrete.Finally,a mathematical formula is proposed that can be used to successfully estimate the service life of fly ash concrete. 展开更多
关键词 CONCRETE fly ash CARBONATION neural networks experimental validation service life
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部