期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Testing visible ozone injury within a Light Exposed Sampling Site as a proxy for ozone risk assessment for European forests
1
作者 Pierre Sicard yasutomo hoshika +2 位作者 Elisa Carrari Alessandra De Marco Elena Paoletti 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第4期1351-1359,共9页
Biologically meaningful and cost-effective indicators are needed for assessing and monitoring the impacts of tropospheric ozone(0_(3)) on vegetation and are required in Europe by the National Emission Ceilings Directi... Biologically meaningful and cost-effective indicators are needed for assessing and monitoring the impacts of tropospheric ozone(0_(3)) on vegetation and are required in Europe by the National Emission Ceilings Directive(2016).However,a clear understanding on the best suited indicators is missing.The MOTTLES(MOnitoring ozone injury for seTTing new critical LEvelS) project set up a new generation network for 0_(3) monitoring in forest plots in order to:1) estimate the stomatal 0_(3) fluxes(Phytotoxic Ozone Dose above a threshold Y of uptake,PODY);and 2) collect visible foliar 0_(3) injury,both within the forest plot(ITP) and along the Light Exposed Sampling Site(LESS) along the forest edge.Nine forest sites at high 0_(3) risk were selected across Italy over 2017-2019 and significant correlations(p <0.05) were found between the percentage of symptomatic plant species within the LESS,and POD1(PODY,with Y=1 nmol 0_(3) m^(-2) s^(-1)) calculated for mixed forest species(r=0.53)and with the occurrence and severity of visible foliar 0_(3) injury on the dominant species in the plots(r=0.65).A generic flux-based critical level for mixed forest species was derived within the LESS and it was recommended using11 mmol m^(-2) POD1 as the critical level for forest protection against 0_(3) injury,similar to the critical level obtained in the ITP(12 mmol m^(-2) POD1).It was concluded that the frequency of symptomatic plant species within a LESS is a suitable and effective plant-response indicator of phytotoxic 0_(3) levels in forest monitoring.LESS is a non-destructive,less complex and less time-consuming approach compared to the ITP for monitoring foliar 0_(3) injury in the long term.Assessing visible foliar 0_(3) injury in the ITP might only underestimate the 0_(3) risk assessment at individual sites.These results are biologically meaningful and useful to monitoring experts and environmental policy makers. 展开更多
关键词 Cost-effective indicator Forest monitoring Light-Exposed Sampling Site OZONE Phytotoxic ozone dose Visible injury
下载PDF
Epidemiological derivation of fl ux-based critical levels for visible ozone injury in European forests
2
作者 Pierre Sicard Alessandra De Marco +8 位作者 Elisa Carrari Laurence Dalstein-Richier yasutomo hoshika Ovidiu Badea Diana Pitar Silvano Fares Adriano Conte Ionel Popa Elena Paoletti 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第5期1509-1519,共11页
The European MOTTLES project set-up a newgeneration network for ozone(O 3)monitoring in 17 plots in France,Italy and Romania.These monitoring stations allowed:(1)estimating the accumulated exposure AOT40 and stomatal ... The European MOTTLES project set-up a newgeneration network for ozone(O 3)monitoring in 17 plots in France,Italy and Romania.These monitoring stations allowed:(1)estimating the accumulated exposure AOT40 and stomatal O 3 fl uxes(PODY)with an hourly threshold of uptake(Y)to represent the detoxifi cation capacity of trees(POD1,with Y=1 nmol O 3 m^−2 s^−1 per leaf area);and(2)collecting data of forest-response indicators,i.e.crown defoliation and visible foliar O 3-like injury over the time period 2017–2019.The soil water content was the most important parameter aff ecting crown defoliation and was a key factor aff ecting the severity of visible foliar O 3-like injury on the dominant tree species in a plot.The soil water content is thus an essential parameter in the PODY estimation,particularly for water-limited environments.An assessment based on stomatal fl ux-based standard and on real plant symptoms is more appropriated than the exposure-based method for protecting vegetation.From fl ux-eff ect relationships,we derived fl ux-based critical levels(CLef)for forest protection against visible foliar O 3-like injury.We recommend CLef of 5 and 12 mmol m^−2 POD1 for broadleaved species and conifers,respectively.Before using PODY as legislative standard in Europe,we recommend using the CLec for≥25%of crown defoliation in a plot:17,000 and 19,000 nmol mol^−1 h AOT40 for conifers and broadleaved species,respectively. 展开更多
关键词 POD Critical levels OZONE Visible injury EPIDEMIOLOGY
下载PDF
Correction To: Epidemiological derivation of flux-based critical levels for visible ozone injury in European forests
3
作者 Pierre Sicard Alessandra De Marco +8 位作者 Elisa Carrari Laurence Dalstein-Richier yasutomo hoshika Ovidiu Badea Diana Pitar Silvano Fares Adriano Conte Ionel Popa Elena Paoletti 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第5期1703-1703,共1页
Correction to:J.For.Res.https://doi.org/10.1007/s11676-020-01191-x In the Original publication of the article,the authors found an error in the text“We recommend CLef of 5 and 12 mmol m−2 POD1 for broadleaved species... Correction to:J.For.Res.https://doi.org/10.1007/s11676-020-01191-x In the Original publication of the article,the authors found an error in the text“We recommend CLef of 5 and 12 mmol m−2 POD1 for broadleaved species and conifers,respectively”under the section abstract and conclusion. 展开更多
关键词 OZONE VISIBLE DERIVATION
下载PDF
Emerging challenges of ozone impacts on asian plants:actions are needed to protect ecosystem health 被引量:1
4
作者 Zhaozhong Feng Evgenios Agathokleous +17 位作者 Xu Yue Elina Oksanen Elena Paoletti Hiroyuki Sase Anthony Gandin Takayoshi Koike Vicent Calatayud Xiangyang Yuan Xuejun Liu Alessandra De Marco Yves Jolivet Sari Kontunen-Soppela yasutomo hoshika Hikaru Saji Pin Li Zhengzhen Li Makoto Watanabe Kazuhiko Kobayashi 《Ecosystem Health and Sustainability》 SCIE 2021年第1期107-120,共14页
Context:Ozone concentrations near the land surface are rising in Asia while they are declining or stagnating in Europe and North America.Ozone is the most widespread air pollutant negatively affecting vegetation,and i... Context:Ozone concentrations near the land surface are rising in Asia while they are declining or stagnating in Europe and North America.Ozone is the most widespread air pollutant negatively affecting vegetation,and its increased concentrations pose a major threat to food quality and production and other ecosystem services in Asia.Method:In this review,we provide an overview of scientific challenges in the impacts of ozone pollution on Asian vegetation,and synthesize the challenges toward mitigation of the impacts.Result:We argue that new policy initiatives need to seek both reduction of ozone levels and enhancement of plant tolerance to ozone to maintain food quality and ensure food supplies.Conclusion:The scientific advancements must be transferred to actions by two types of institutions:a)environmental agencies for reducing ozone levels and b)agricultural research institutions for enhancing plant tolerance to ozone.In connecting the scientific advancements with the institutional actions,scientists in Asian countries should play the key role taking advantages of interdisciplinary and international collaborations. 展开更多
关键词 Asia air pollution monitoring ecosystem health environmental regulation ozone impact mitigation VEGETATION
原文传递
Protecting the photosynthetic performance of snap bean under free air ozone exposure 被引量:1
5
作者 Lu Zhang yasutomo hoshika +2 位作者 Elisa Carrari Kent O.Burkey Elena Paoletti 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第4期31-40,共10页
Tropospheric ozone(O3) is a major air pollutant and causes serious injury to vegetation. To protect sensitive plants from O3 damage, several agrochemicals have been assessed,including cytokinin(e.g., kinetin, KIN)... Tropospheric ozone(O3) is a major air pollutant and causes serious injury to vegetation. To protect sensitive plants from O3 damage, several agrochemicals have been assessed,including cytokinin(e.g., kinetin, KIN) and ethylenediurea(EDU) with cytokinin-like activity.In higher plant, leaves are primarily injured by O3 and protective agrochemicals are often applied by leaf spraying. To our knowledge, the mitigating abilities of EDU and KIN have not been compared directly in a realistic setup. In the present research, impacts of elevated O3(2 × ambient O3, 24 hr per day, for 8 days) on an O3 sensitive line(S156) of snap bean(Phaseolus vulgaris), which is often used for biomonitoring O3 pollution, were studied in a free air controlled exposure system. The day before starting the O3 exposure, plants were sprayed with a solution of EDU(300 ppm), KIN(1 mmol/L) or distilled water, to compare their protective abilities. The results demonstrated that 2 × ambient O3 inhibited net photosynthetic rate and stomatal conductance, increased the minimal fluorescence yield of the dark-adapted state, decreased the maximal quantum yield of PSII photochemistry, and led to visible injury. KIN and EDU alleviated the reduction of the photosynthetic performance, and visible injury under O3 fumigation. The plants sprayed with EDU showed greater ability to mitigate the O3 damage than those sprayed with KIN. Chlorophyll fluorescence imaging may have detected more precisely the differences in O3 response across the leaf than the conventional fluorometer. 展开更多
关键词 Ethylenediurea Free air controlled exposure Kinetin Ozone Phaseolus vulgaris
原文传递
Extrapolating plot-scale CO_(2) and ozone enrichment experimental results to novel conditions and scales using mechanistic modeling
6
作者 Eric J.Gustafson Mark E.Kubiske +2 位作者 Brian R.Miranda yasutomo hoshika Elena Paoletti 《Ecological Processes》 SCIE EI 2018年第1期348-367,共20页
Introduction:The Aspen-FACE experiment was an 11-year study of the effect of elevated CO_(2) and ozone(alone and in combination)on the growth of model aspen communities(pure aspen,aspen-birch,and aspen-maple)in the fi... Introduction:The Aspen-FACE experiment was an 11-year study of the effect of elevated CO_(2) and ozone(alone and in combination)on the growth of model aspen communities(pure aspen,aspen-birch,and aspen-maple)in the field in northern Wisconsin,USA.Uncertainty remains about how these short-term plotlevel responses might play out over broader temporal and spatial scales where climate change,competition,succession,and disturbances interact with tree-level responses.In this study,we used a new physiologybased approach(PnET-Succession v3.1)within the forest landscape model LANDIS-II to extrapolate the FACE results to broader temporal scales(and ultimately to landscape scale)by mechanistically accounting for the globally changing drivers of temperature,precipitation,CO_(2),and ozone.We added novel algorithms to the model to mechanistically simulate the effects of ozone on photosynthesis through ozone-induced impairment of stomatal control(i.e.,stomatal sluggishness)and damage of photosynthetic capacity at the chloroplast level.Results:We calibrated the model to empirical observations of competitive interactions on the elevated CO_(2) and O_(3) plots of the Aspen-FACE experiment and successfully validated it on the combined factor plots.We used the validated model to extend the Aspen-FACE experiment for 80 years.When only aspen clones competed,we found that clone 271 always dominated,although the ozone-tolerant clone was co-dominant when ozone was present.Under all treatments,when aspen clone 216 and birch competed,birch was always dominant or co-dominant,and when clone 216 and maple competed,clone 216 was dominant,although maple was able to grow steadily because of its shade tolerance.We also predicted long-term competitive outcomes for novel assemblages of taxa under each treatment and discovered that future composition and dominant taxa depend on treatment,and that short-term trends do not always persist in the long term.Conclusions:We identified the strengths and weaknesses of PnET-Succession v3.1 and conclude that it can generate potentially robust predictions of the effects of elevated CO_(2) and ozone at landscape scales because of its mechanistically motivated algorithms.These capabilities can be used to project forest dynamics under anticipated future conditions that have no historical analog with which to parameterize less mechanistic models. 展开更多
关键词 Scaling Global change Elevated CO_(2) Ozone pollution Aspen-FACE Forest composition Carbon dynamics Forest landscape modeling LANDIS-II PnET-succession
原文传递
Bridging experimental and monitoring research for visible foliar injury as bio-indicator of ozone impacts on forests
7
作者 Barbara Baesso Moura Elisa Carrari +8 位作者 Laurence Dalstein-Richier Pierre Sicard Stefan Leca Ovidiu Badea Diana Pitar-Silaghi Anumol Shashikumar Marie-Lyne Ciriani Elena Paoletti yasutomo hoshika 《Ecosystem Health and Sustainability》 SCIE 2022年第1期295-309,共15页
Tropospheric ozone(O_(3))is a phytotoxic air pollutant and the O_(3)-induced visible foliar injury(O_(3)VFI)is a biomarker.A recently developed Free-air O_(3)eXposure(FO_(3)X)is a promising facility to verify field-ob... Tropospheric ozone(O_(3))is a phytotoxic air pollutant and the O_(3)-induced visible foliar injury(O_(3)VFI)is a biomarker.A recently developed Free-air O_(3)eXposure(FO_(3)X)is a promising facility to verify field-observed“O_(3)-like”VFIs and to establish a flux-based threshold for the O_(3)VFI onset.The present study compared O_(3)-like VFI registered in the southern European forest sites with actual O_(3)VFI observed in a FO_(3)X experiment.The O_(3)-like VFIs were evaluated by eye in forests and thus it was subjective.According to the imaging analysis,we firstly demonstrated that major parts of the colors were similar in the field and the FO_(3)X.The color pallets for O_(3)VFI was species-specific and considered a advanced tool for the O_(3)VFI diagnosis.In addition,we calculated a flux-based threshold for the O_(3)VFI onset at the FO_(3)X based on a Phytotoxic Ozone Dose(POD_(1)),which ranged from 4.9 to 18.1 mmol m^(-2)POD1.This FO_(3)X-derived threshold partly explained but did not necessarily match with the observation for several tree species in actual forests.The multivariate analysis showed that O_(3)VFI was decreased by the presence of various species and suggested the importance of continuous monitoring activities in the field for the further analysis. 展开更多
关键词 OZONE visible foliar injury FO3X MOTTLES forest monitoring
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部