期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Nanodot array deposition via single shot laser interference pattern using laser-induced forward transfer 被引量:1
1
作者 Yoshiki Nakata Eiki Hayashi +4 位作者 Koji Tsubakimoto Noriaki Miyanaga Aiko Narazaki Tatsuya Shoji yasuyuki tsuboi 《International Journal of Extreme Manufacturing》 2020年第2期114-118,共5页
Laser-induced forward transfer(LIFT)is a direct-writing technique capable of depositing a single dot smaller than the laser wavelength at small shot energy through the laser-induced dot transfer(LIDT)technique.To depo... Laser-induced forward transfer(LIFT)is a direct-writing technique capable of depositing a single dot smaller than the laser wavelength at small shot energy through the laser-induced dot transfer(LIDT)technique.To deposit a single nanodot in a single shot of laser irradiation,a liquid nanodrop is transferred from donor to receiver and finally solidified via a solid–liquid–solid(SLS)process.In conventional LIDT experiments,multi-shots with step scanning have been used to form array structures.However,interference laser processing can achieve an arrayed process and generate a periodic structure in a single shot.In this study,a femtosecond laser interference pattern was first applied to LIDT,and an array of nanodots was successfully deposited in a single shot,producing the following unit structures:a single dot,adjoining dots,and stacking dots.The diameter of the smallest nanodot was 355 nm,and the narrowest gap between two adjoining nanodots was 17.2 nm.The LIDT technique produces high-purity,catalyst-free that do not require post-cleaning or alignment processes.Given these significant advantages,LIDT can expand the usability of nanodots in a wide range of fields. 展开更多
关键词 interference laser processing laser-induced dot transfer NANODOT array femtosecond laser solid-liquid-solid mechanism Au
下载PDF
Thermally Induced Nanocrystal Array of Poly(N-Vinylcarbazole) on Si-Wafer Substrate
2
作者 Kazushi Yamada yasuyuki tsuboi 《Materials Sciences and Applications》 2014年第5期271-277,共7页
Recently, nanostructures such as nanocrystals and nanoaggregates have attracted much attention in many quarters of materials, electronics, and biology to create higher-value-added functional nanoscale materials and fi... Recently, nanostructures such as nanocrystals and nanoaggregates have attracted much attention in many quarters of materials, electronics, and biology to create higher-value-added functional nanoscale materials and films. In this research, the fabrication of nanoaggregates on ultrathin photoconductive films of poly(N-vinylcarbazole) (PVCz) by applying thermal treatment is demonstrated. The structure and size are discussed on the basis of the results of atomic force microscope images. As a result, after thermal treatment of these films above the glass transition temperature (Tg) of PVCz, different types of surface morphological changes were induced showing a dependence on the tacticity of PVCz. Radically polymerized PVCz(r) ultrathin film showed small aggregates with heights of ~8 nm on the film surface after thermal treatment, while cationically polymerized PVCz(c), which has higher isotactic diad fractions than PVCz(r), indicated similar aggregates on the film surface, although the number of aggregates was smaller than PVCz(r). It is considered that these different phenomena depend on the tacticity of PVCz and the interaction between PVCz molecules and the substrate surface. 展开更多
关键词 AFM Poly(N-Vinylcarbazole) Structural Transfer Thermal Treatment NANOAGGREGATES
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部