L1_(2)phase-strengthened Fe-Co-Ni-based high-entropy alloys(HEAs)have attracted considerable attention due to their excellent mechanical properties.Improving the properties of HEAs through conventional experimental me...L1_(2)phase-strengthened Fe-Co-Ni-based high-entropy alloys(HEAs)have attracted considerable attention due to their excellent mechanical properties.Improving the properties of HEAs through conventional experimental methods is costly.Therefore,a new method is needed to predict the properties of alloys quickly and accurately.In this study,a comprehensive prediction model for L1_(2)phase-strengthened Fe-Co-Ni-based HEAs was developed.The existence of the L1_(2)phase in the HEAs was first predicted.A link was then established between the microstructure(L1_(2)phase volume fraction)and properties(hardness)of HEAs,and comprehensive prediction was performed.Finally,two mutually exclusive properties(strength and plasticity)of HEAs were coupled and co-optimized.The Shapley additive explained algorithm was also used to interpret the contribution of each model feature to the comprehensive properties of HEAs.The vast compositional and process search space of HEAs was progressively screened in three stages by applying different prediction models.Finally,four HEAs were screened from hundreds of thousands of possible candidate groups,and the prediction results were verified by experiments.In this work,L1_(2)phase-strengthened Fe-Co-Ni-based HEAs with high strength and plasticity were successfully designed.The new method presented herein has a great cost advantage over traditional experimental methods.It is also expected to be applied in the design of HEAs with various excellent properties or to explore the potential factors affecting the microstructure/properties of alloys.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52161011,52373236)the Natural Science Foundation of Guangxi Province(2023GXNSFDA026046)+8 种基金Guangxi Science and Technology Project(Guike AB24010247)the Central Guiding Local Science and Technology Development Fund Projects(Guike ZY23055005)the Scientific Research and Technology Development Program of Guilin(20220110-3)the Scientific Research and Technology Development Program of Nanning Jiangnan district(20230715-02)the Guangxi Key Laboratory of Superhard Material(2022-K-001),the Guangxi Key Laboratory of Information Materials(231003-Z,231013-Z and 231033-K)the Engineering Research Center of Electronic Information Materials and Devices,the Ministry of Education(EIMD-AB202009),the Major Research Plan of the National Natural Science Foundation of China(92166112),the Innovation Project of GUET Graduate Education(2022YCXS200)the Projects of MOE Key Lab of Disaster Forecast and Control in Engineering in Jinan University(20200904006)the Guangdong Province International Science and Technology Cooperation Project(2023A0505050103)the Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF010)for the financial support given to this work.
文摘L1_(2)phase-strengthened Fe-Co-Ni-based high-entropy alloys(HEAs)have attracted considerable attention due to their excellent mechanical properties.Improving the properties of HEAs through conventional experimental methods is costly.Therefore,a new method is needed to predict the properties of alloys quickly and accurately.In this study,a comprehensive prediction model for L1_(2)phase-strengthened Fe-Co-Ni-based HEAs was developed.The existence of the L1_(2)phase in the HEAs was first predicted.A link was then established between the microstructure(L1_(2)phase volume fraction)and properties(hardness)of HEAs,and comprehensive prediction was performed.Finally,two mutually exclusive properties(strength and plasticity)of HEAs were coupled and co-optimized.The Shapley additive explained algorithm was also used to interpret the contribution of each model feature to the comprehensive properties of HEAs.The vast compositional and process search space of HEAs was progressively screened in three stages by applying different prediction models.Finally,four HEAs were screened from hundreds of thousands of possible candidate groups,and the prediction results were verified by experiments.In this work,L1_(2)phase-strengthened Fe-Co-Ni-based HEAs with high strength and plasticity were successfully designed.The new method presented herein has a great cost advantage over traditional experimental methods.It is also expected to be applied in the design of HEAs with various excellent properties or to explore the potential factors affecting the microstructure/properties of alloys.