Resistive random-access memory(RRAM),also known as memristors,having a very simple device structure with two terminals,fulfill almost all of the fundamental requirements of volatile memory,nonvolatile memory,and neuro...Resistive random-access memory(RRAM),also known as memristors,having a very simple device structure with two terminals,fulfill almost all of the fundamental requirements of volatile memory,nonvolatile memory,and neuromorphic characteristics.Its memory and neuromorphic behaviors are currently being explored in relation to a range of materials,such as biological materials,perovskites,2D materials,and transition metal oxides.In this review,we discuss the different electrical behaviors exhibited by RRAM devices based on these materials by briefly explaining their corresponding switching mechanisms.We then discuss emergent memory technologies using memristors,together with its potential neuromorphic applications,by elucidating the different material engineering techniques used during device fabrication to improve the memory and neuromorphic performance of devices,in areas such as ION/IOFF ratio,endurance,spike time-dependent plasticity(STDP),and paired-pulse facilitation(PPF),among others.The emulation of essential biological synaptic functions realized in various switching materials,including inorganic metal oxides and new organic materials,as well as diverse device structures such as single-layer and multilayer hetero-structured devices,and crossbar arrays,is analyzed in detail.Finally,we discuss current challenges and future prospects for the development of inorganic and new materials-based memristors.展开更多
Volatile organic compounds(VOCs)released from the waste treatment facilities have become a significant issue because they are not only causing odor nuisance but may also hazard to human health.Non-thermal plasma(NTP)t...Volatile organic compounds(VOCs)released from the waste treatment facilities have become a significant issue because they are not only causing odor nuisance but may also hazard to human health.Non-thermal plasma(NTP)technologies are newly developed methods and became a research trend in recent years regarding the removal of VOCs from the air stream.Due to its unique characteristics,such as rapid response at room temperature,bulk homogenized volume,high reaction efficiency,dielectric barrier discharge(DBD)plasma technology is considered one of the most promising techniques of NTP.This paper reviews recent progress of DBD plasma technology for abatement of VOCs.The principle of plasma generation in DBD and its configurations(electrode,discharge gap,dielectric barrier material,etc.)are discussed in details.Based on previously published literature,attention has been paid on the effect of DBD configuration on the removal of VOCs.Effect of various process parameters such as initial concentration,gas feeding rate,oxygen content and input power on VOCs removal are also considered.Moreover,the role of catalysis and inhibitors in VOCs removal by DBD system are presented.Finally,a modified configuration of the DBD reactor,i.e.double dielectric barrier discharge(DDBD)for the abatement of VOCs is discussed.It was suggested that the DDBD plasma reactor could be used for higher conversion efficiency as well as for avoiding solid residue deposition on the electrode.These depositions can interfere with the performance of the reactor.展开更多
基金Basic Science Research Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Education(NRF-2019R1F1A1057243)together with the Future Semiconductor Device Technology Development Program(20003808,10080689,20004399)funded by MOTIE(Ministry of Trade,Industry&Energy)and KSRC(Korea Semiconductor Research Consortium).
文摘Resistive random-access memory(RRAM),also known as memristors,having a very simple device structure with two terminals,fulfill almost all of the fundamental requirements of volatile memory,nonvolatile memory,and neuromorphic characteristics.Its memory and neuromorphic behaviors are currently being explored in relation to a range of materials,such as biological materials,perovskites,2D materials,and transition metal oxides.In this review,we discuss the different electrical behaviors exhibited by RRAM devices based on these materials by briefly explaining their corresponding switching mechanisms.We then discuss emergent memory technologies using memristors,together with its potential neuromorphic applications,by elucidating the different material engineering techniques used during device fabrication to improve the memory and neuromorphic performance of devices,in areas such as ION/IOFF ratio,endurance,spike time-dependent plasticity(STDP),and paired-pulse facilitation(PPF),among others.The emulation of essential biological synaptic functions realized in various switching materials,including inorganic metal oxides and new organic materials,as well as diverse device structures such as single-layer and multilayer hetero-structured devices,and crossbar arrays,is analyzed in detail.Finally,we discuss current challenges and future prospects for the development of inorganic and new materials-based memristors.
文摘Volatile organic compounds(VOCs)released from the waste treatment facilities have become a significant issue because they are not only causing odor nuisance but may also hazard to human health.Non-thermal plasma(NTP)technologies are newly developed methods and became a research trend in recent years regarding the removal of VOCs from the air stream.Due to its unique characteristics,such as rapid response at room temperature,bulk homogenized volume,high reaction efficiency,dielectric barrier discharge(DBD)plasma technology is considered one of the most promising techniques of NTP.This paper reviews recent progress of DBD plasma technology for abatement of VOCs.The principle of plasma generation in DBD and its configurations(electrode,discharge gap,dielectric barrier material,etc.)are discussed in details.Based on previously published literature,attention has been paid on the effect of DBD configuration on the removal of VOCs.Effect of various process parameters such as initial concentration,gas feeding rate,oxygen content and input power on VOCs removal are also considered.Moreover,the role of catalysis and inhibitors in VOCs removal by DBD system are presented.Finally,a modified configuration of the DBD reactor,i.e.double dielectric barrier discharge(DDBD)for the abatement of VOCs is discussed.It was suggested that the DDBD plasma reactor could be used for higher conversion efficiency as well as for avoiding solid residue deposition on the electrode.These depositions can interfere with the performance of the reactor.