期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
双介质阻挡放电低温等离子体对模拟堆肥气体中氨气的去除 被引量:3
1
作者 代辉祥 陆文静 +2 位作者 yawar abbas 李超 王前 《化工进展》 EI CAS CSCD 北大核心 2020年第9期3801-3809,共9页
针对固体废物堆肥设施氨气污染问题,本文首次运用双介质阻挡放电低温等离子体(DDBD)技术去除模拟堆肥气体中的氨气。考察了输入功率、氨气流速、氨气初始浓度、反应器放电间隙、氧气含量等参数对氨气去除率和低温等离子体系统能量效率... 针对固体废物堆肥设施氨气污染问题,本文首次运用双介质阻挡放电低温等离子体(DDBD)技术去除模拟堆肥气体中的氨气。考察了输入功率、氨气流速、氨气初始浓度、反应器放电间隙、氧气含量等参数对氨气去除率和低温等离子体系统能量效率的影响,并分析了副产物的生成情况及其影响因子。研究结果表明,氨气去除率与输入功率和氧气含量呈正相关,与氨气流速和氨气初始浓度呈负相关。低温等离子体系统的能量效率与氨气流速、氨气初始浓度、氧气含量均正相关,但随输入功率的增加先升高后降低。研究发现,在所设定的反应条件下,4mm放电间隙反应器的能耗最低,能量效率最高。O3和NOx是DDBD去除氨气的反应副产物,其浓度均与氧气含量呈正相关,均呈现随输入功率的增加先升高后降低的趋势。 展开更多
关键词 双介质阻挡放电 等离子体 氨气 环境 污染 降解
下载PDF
Towards engineering in memristors for emerging memory and neuromorphic computing: A review 被引量:5
2
作者 Andrey S.Sokolov Haider abbas +1 位作者 yawar abbas Changhwan Choi 《Journal of Semiconductors》 EI CAS CSCD 2021年第1期33-61,共29页
Resistive random-access memory(RRAM),also known as memristors,having a very simple device structure with two terminals,fulfill almost all of the fundamental requirements of volatile memory,nonvolatile memory,and neuro... Resistive random-access memory(RRAM),also known as memristors,having a very simple device structure with two terminals,fulfill almost all of the fundamental requirements of volatile memory,nonvolatile memory,and neuromorphic characteristics.Its memory and neuromorphic behaviors are currently being explored in relation to a range of materials,such as biological materials,perovskites,2D materials,and transition metal oxides.In this review,we discuss the different electrical behaviors exhibited by RRAM devices based on these materials by briefly explaining their corresponding switching mechanisms.We then discuss emergent memory technologies using memristors,together with its potential neuromorphic applications,by elucidating the different material engineering techniques used during device fabrication to improve the memory and neuromorphic performance of devices,in areas such as ION/IOFF ratio,endurance,spike time-dependent plasticity(STDP),and paired-pulse facilitation(PPF),among others.The emulation of essential biological synaptic functions realized in various switching materials,including inorganic metal oxides and new organic materials,as well as diverse device structures such as single-layer and multilayer hetero-structured devices,and crossbar arrays,is analyzed in detail.Finally,we discuss current challenges and future prospects for the development of inorganic and new materials-based memristors. 展开更多
关键词 RRAM MEMRISTOR emerging memories neuromorphic computing electronic synapse resistive switching memristor engineering
下载PDF
A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds 被引量:15
3
作者 Wenjing Lu yawar abbas +2 位作者 Muhammad Farooq Mustafa Chao Pan Hongtao Wang 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2019年第2期1-19,共19页
Volatile organic compounds(VOCs)released from the waste treatment facilities have become a significant issue because they are not only causing odor nuisance but may also hazard to human health.Non-thermal plasma(NTP)t... Volatile organic compounds(VOCs)released from the waste treatment facilities have become a significant issue because they are not only causing odor nuisance but may also hazard to human health.Non-thermal plasma(NTP)technologies are newly developed methods and became a research trend in recent years regarding the removal of VOCs from the air stream.Due to its unique characteristics,such as rapid response at room temperature,bulk homogenized volume,high reaction efficiency,dielectric barrier discharge(DBD)plasma technology is considered one of the most promising techniques of NTP.This paper reviews recent progress of DBD plasma technology for abatement of VOCs.The principle of plasma generation in DBD and its configurations(electrode,discharge gap,dielectric barrier material,etc.)are discussed in details.Based on previously published literature,attention has been paid on the effect of DBD configuration on the removal of VOCs.Effect of various process parameters such as initial concentration,gas feeding rate,oxygen content and input power on VOCs removal are also considered.Moreover,the role of catalysis and inhibitors in VOCs removal by DBD system are presented.Finally,a modified configuration of the DBD reactor,i.e.double dielectric barrier discharge(DDBD)for the abatement of VOCs is discussed.It was suggested that the DDBD plasma reactor could be used for higher conversion efficiency as well as for avoiding solid residue deposition on the electrode.These depositions can interfere with the performance of the reactor. 展开更多
关键词 NON-THERMAL plasma (NTP) Dielectric barrier discharge (DBD) Volatile organic compounds (VOCs) ABATEMENT Input power
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部