期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Remaining Useful Life Model and Assessment of Mechanical Products: A Brief Review and a Note on the State Space Model Method 被引量:6
1
作者 yawei hu Shujie Liu +1 位作者 huitian Lu Hongchao Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第1期11-30,共20页
The remaining useful life(RUL) prediction of mechanical products has been widely studied for online system performance reliability, device remanufacturing, and product safety(safety awareness and safety improvement). ... The remaining useful life(RUL) prediction of mechanical products has been widely studied for online system performance reliability, device remanufacturing, and product safety(safety awareness and safety improvement). These studies incorporated many di erent models, algorithms, and techniques for modeling and assessment. In this paper, methods of RUL assessment are summarized and expounded upon using two major methods: physics model based and data driven based methods. The advantages and disadvantages of each of these methods are deliberated and compared as well. Due to the intricacy of failure mechanism in system, and di culty in physics degradation observation, RUL assessment based on observations of performance variables turns into a science in evaluating the degradation. A modeling method from control systems, the state space model(SSM), as a first order hidden Markov, is presented. In the context of non-linear and non-Gaussian systems, the SSM methodology is capable of performing remaining life assessment by using Bayesian estimation(sequential Monte Carlo). Being e ective for non-linear and non-Gaussian dynamics, the methodology can perform the assessment recursively online for applications in CBM(condition based maintenance), PHM(prognostics and health management), remanufacturing, and system performance reliability. Finally, the discussion raises concerns regarding online sensing data for SSM modeling and assessment of RUL. 展开更多
关键词 REMAINING useful life State space MODEL Online ASSESSMENT BAYESIAN estimation Particle filter REMANUFACTURING
下载PDF
Fault-Induced Coal Burst Mechanism under Mining-Induced Static and Dynamic Stresses 被引量:10
2
作者 Wu Cai Linming Dou +1 位作者 Guangyao Si yawei hu 《Engineering》 SCIE EI 2021年第5期687-700,共14页
Fault is a common geological structure that has been revealed in the process of underground coal excavation and mining.The nature of its discontinuous structure controls the deformation,damage,and mechanics of the coa... Fault is a common geological structure that has been revealed in the process of underground coal excavation and mining.The nature of its discontinuous structure controls the deformation,damage,and mechanics of the coal or rock mass.The interaction between this discontinuous structure and mining activities is a key factor that dominates fault reactivation and the coal burst it can induce.This paper first summarizes investigations into the relationships between coal mining layouts and fault occurrences,along with relevant conceptual models for fault reactivation.Subsequently,it proposes mechanisms of fault reactivation and its induced coal burst based on the superposition of static and dynamic stresses,which include two kinds of fault reactivations from:mining-induced quasi-static stress(FRMSS)-dominated and seismic-based dynamic stress(FRSDS)-dominated.These two kinds of fault reactivations are then validated by the results of experimental investigations,numerical modeling,and in situ microseismic monitoring.On this basis,monitoring methods and prevention strategies for fault-induced coal burst are discussed and recommended.The results show that fault-induced coal burst is triggered by the superposition of high static stress in the fault pillar and dynamic stress from fault reactivation.High static stress comes from the interaction of the fault and the roof structure,and dynamic stress can be ascribed to FRMSS and FRSDS.The results in this paper could be of great significance in guiding the monitoring and prevention of fault-induced coal bursts. 展开更多
关键词 Coal burst Fault reactivation Mining-induced stress Seismic-based dynamic stress Fault pillar
下载PDF
Effect of surface morphology on wettability conversion
3
作者 Xia KONG yawei hu +1 位作者 Xiaofang WANG Wei PAN 《Journal of Advanced Ceramics》 CSCD 2016年第4期284-290,共7页
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部