Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(...Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(SWI),of annual precipitation to potential evapotranspiration(PET)being below 0.65.PET is commonly estimated using the Thornthwaite(PET Th)and Penman–Monteith equations(PET PM).The present study compared spatiotemporal characteristics of global drylands based on the SWI with PET Th and PET PM.Results showed vast differences between PET Th and PET PM;however,the SWI derived from the two kinds of PET showed broadly similar characteristics in the interdecadal variability of global and continental drylands,except in North America,with high correlation coefficients ranging from 0.58 to 0.89.It was found that,during 1901–2014,global hyper-arid and semi-arid regions expanded,arid and dry sub-humid regions contracted,and drylands underwent interdecadal fluctuation.This was because precipitation variations made major contributions,whereas PET changes contributed to a much lesser degree.However,distinct differences in the interdecadal variability of semi-arid and dry sub-humid regions were found.This indicated that the influence of PET changes was comparable to that of precipitation variations in the global dry–wet transition zone.Additionally,the contribution of PET changes to the variations in global and continental drylands gradually enhanced with global warming,and the Thornthwaite method was found to be increasingly less applicable under climate change.展开更多
Summer precipitation anomalies over eastern China axe characterized spatially by meridionally banded structnres fluctu- ating on interannual and interdecadal timescales, leading to regional droughts and floods. In add...Summer precipitation anomalies over eastern China axe characterized spatially by meridionally banded structnres fluctu- ating on interannual and interdecadal timescales, leading to regional droughts and floods. In addition to long-term trends, how these patterns may change under global warming has important implications for agricultural planning and water resources over this densely populated area. Using the latest Hadley Centre climate model, HadGEM3-GC2, this paper investigates the potential response of summer precipitation patterns over this region, by comparing the leading modes between a 4×CQ simulation and the model's pre-industrial control simulation. Empirical Orthogonal Function (EOF) analyses show that the first two leading modes account for about 20% of summer rainfall variability. EOF1 is a monopole mode associated with the developing phase of ENSO events and EOF2 is a dipole mode associated with the decaying phase of ENSO. Under 4×CO2 forcing, the dipole mode with a south-north orientation becomes dominant because of a strengthened influence from exces- sive warming of the Indian Ocean. On interdecadal time scales, the first EOF looks very different from the control simulation, showing a dipole mode of east-west contrast with enhanced influence from high latitudes.展开更多
With climate warming, frequent drought events have occurred in recent decades, causing huge losses to industrial and agricultural production, and affecting people’s daily lives. The monitoring and forecasting of drou...With climate warming, frequent drought events have occurred in recent decades, causing huge losses to industrial and agricultural production, and affecting people’s daily lives. The monitoring and forecasting of drought events has drawn increasing attention. However, compared with the various monthly drought indices and their wide application in drought research,daily drought indices, which would be much more suitable for drought monitoring and forecasting, are still scarce. The development of a daily drought index would improve the accuracy of drought monitoring and forecasting, and facilitate the evaluation of existing indices. In this study, we constructed a new daily drought index, the daily evapotranspiration deficit index(DEDI), based on actual and potential evapotranspiration data from the high-resolution ERA5 reanalysis dataset of the European Center for Medium-Range Weather Forecasts. This new index was then applied to analyze the spatial and temporal evolution characteristics of four drought events that occurred in southwest, north, northeast, and eastern northwest China in the spring and summer of 2019. Comparisons with the operationally used Meteorological Drought Composite Index and another commonly used index, the Standardized Precipitation Evapotranspiration Index, indicated that DEDI characterized the spatiotemporal evolution of the four drought events reasonably well and was superior in depicting the onset and cessation of the drought events,as well as multiple drought intensity peaks. Additionally, DEDI considers land surface conditions, such as vegetation coverage,which enables its potential application not only for meteorological purposes but also for agricultural drought warning and monitoring.展开更多
基金sponsored by the National K&D Program of China (Grant No. 2016YFA0600404)the China Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201106028 and GYHY2015060011)+1 种基金the National Natural Science Foundation of China (Grant No. 41530532)the Jiangsu Collaborative Innovation Center for Climate Change
文摘Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(SWI),of annual precipitation to potential evapotranspiration(PET)being below 0.65.PET is commonly estimated using the Thornthwaite(PET Th)and Penman–Monteith equations(PET PM).The present study compared spatiotemporal characteristics of global drylands based on the SWI with PET Th and PET PM.Results showed vast differences between PET Th and PET PM;however,the SWI derived from the two kinds of PET showed broadly similar characteristics in the interdecadal variability of global and continental drylands,except in North America,with high correlation coefficients ranging from 0.58 to 0.89.It was found that,during 1901–2014,global hyper-arid and semi-arid regions expanded,arid and dry sub-humid regions contracted,and drylands underwent interdecadal fluctuation.This was because precipitation variations made major contributions,whereas PET changes contributed to a much lesser degree.However,distinct differences in the interdecadal variability of semi-arid and dry sub-humid regions were found.This indicated that the influence of PET changes was comparable to that of precipitation variations in the global dry–wet transition zone.Additionally,the contribution of PET changes to the variations in global and continental drylands gradually enhanced with global warming,and the Thornthwaite method was found to be increasingly less applicable under climate change.
基金jointly sponsored by the National Key R&D Program of China(Grant No.2016YFA0600404)the National Natural Science Foundation of China(Grant Nos.41530532 and 41605057)+1 种基金the China Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201506001-1)the Jiangsu Collaborative Innovation Center for Climate Change,and the UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP) China as part of the Newton Fund
文摘Summer precipitation anomalies over eastern China axe characterized spatially by meridionally banded structnres fluctu- ating on interannual and interdecadal timescales, leading to regional droughts and floods. In addition to long-term trends, how these patterns may change under global warming has important implications for agricultural planning and water resources over this densely populated area. Using the latest Hadley Centre climate model, HadGEM3-GC2, this paper investigates the potential response of summer precipitation patterns over this region, by comparing the leading modes between a 4×CQ simulation and the model's pre-industrial control simulation. Empirical Orthogonal Function (EOF) analyses show that the first two leading modes account for about 20% of summer rainfall variability. EOF1 is a monopole mode associated with the developing phase of ENSO events and EOF2 is a dipole mode associated with the decaying phase of ENSO. Under 4×CO2 forcing, the dipole mode with a south-north orientation becomes dominant because of a strengthened influence from exces- sive warming of the Indian Ocean. On interdecadal time scales, the first EOF looks very different from the control simulation, showing a dipole mode of east-west contrast with enhanced influence from high latitudes.
基金This work was supported by the National Key R&D Program of China(Grant No.2018YFC1508701).
文摘With climate warming, frequent drought events have occurred in recent decades, causing huge losses to industrial and agricultural production, and affecting people’s daily lives. The monitoring and forecasting of drought events has drawn increasing attention. However, compared with the various monthly drought indices and their wide application in drought research,daily drought indices, which would be much more suitable for drought monitoring and forecasting, are still scarce. The development of a daily drought index would improve the accuracy of drought monitoring and forecasting, and facilitate the evaluation of existing indices. In this study, we constructed a new daily drought index, the daily evapotranspiration deficit index(DEDI), based on actual and potential evapotranspiration data from the high-resolution ERA5 reanalysis dataset of the European Center for Medium-Range Weather Forecasts. This new index was then applied to analyze the spatial and temporal evolution characteristics of four drought events that occurred in southwest, north, northeast, and eastern northwest China in the spring and summer of 2019. Comparisons with the operationally used Meteorological Drought Composite Index and another commonly used index, the Standardized Precipitation Evapotranspiration Index, indicated that DEDI characterized the spatiotemporal evolution of the four drought events reasonably well and was superior in depicting the onset and cessation of the drought events,as well as multiple drought intensity peaks. Additionally, DEDI considers land surface conditions, such as vegetation coverage,which enables its potential application not only for meteorological purposes but also for agricultural drought warning and monitoring.