期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
The transition from traditional banking to mobile internet finance:an organizational innovation perspective-a comparative study of Citibank and ICBC 被引量:21
1
作者 Zhuming Chen Yushan Li +1 位作者 yawen wu Junjun Luo 《Financial Innovation》 2017年第1期146-161,共16页
The development of Financial Technology(FinTech)in areas such as mobile Internet,cloud computing,big data,search engines,and blockchain technology have significantly changed the financial industry.FinTech is expected ... The development of Financial Technology(FinTech)in areas such as mobile Internet,cloud computing,big data,search engines,and blockchain technology have significantly changed the financial industry.FinTech is expected to overturn the traditional banking business model,forcing banks to upgrade and transform.This study adopts a comparative case study method to contrast and analyze the Industrial and Commercial Bank of China(ICBC)and Citibank.It analyzes the strategies,organizations,HR systems,and product innovations adopted by these two banks in response to the impact of FinTech.This paper proposes an“electric vehicle”mode for ICBC and an“airplane mode”for Citibank.Further,it describes the difficulties encountered by the Chinese banking industry and proposes some feasible ways to upgrade.“Technology power”will become the core competitive concept for the financial institutions of the future. 展开更多
关键词 Mobile Internet finance Traditional banks Upgrade and transformation Organizational innovation Technology power
下载PDF
OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway 被引量:6
2
作者 Wenqiang Chen Wei Wang +9 位作者 Yusong Lyu yawen wu Pingliang Huang Shikai Hu Xiangjin Wei Guiai Jiao Zhonghua Sheng Shaoqing Tang Gaoneng Shao Ju Luo 《The Crop Journal》 SCIE CSCD 2021年第1期68-78,共11页
Pre-harvest sprouting(PHS)is a disadvantageous trait in cereal production worldwide,causing large economic losses each year.Its regulation mechanism is still unclear.We generated the Oryza sativa Viviparous1(OsVP1)mut... Pre-harvest sprouting(PHS)is a disadvantageous trait in cereal production worldwide,causing large economic losses each year.Its regulation mechanism is still unclear.We generated the Oryza sativa Viviparous1(OsVP1)mutant using gene editing technique,which shows increased PHS compared with that of the wild type Nipponbare.OsVP1 is localized mainly in the nucleus and expressed in various tissues and organs.Expression of Seed dormancy 4(Sdr4),a key gene controlling PHS,was sharply reduced in OsVP1 mutants.OsVP1 bound to the specific motif CACCTG in the promoter of Sdr4 and activated its expression in rice protoplasts.Overexpression of Sdr4 reduced the high seed germination rate of OsVP1 mutant cr-osvp1-1,showing that Sdr4 acts as a downstream target of OsVP1.Both OsVP1 and Sdr4 loss-of-function mutants were insensitive to exogenous ABA and employed the ABA signaling pathway in regulating seed dormancy.These findings shed light on the control of seed dormancy aimed at preventing PHS in rice. 展开更多
关键词 RICE Pre-harvest sprouting Seed dormancy OsVP1 Sdr4 ABA
下载PDF
Integrated transcriptome, small RNA, and degradome analysis to elucidate the regulation of rice seedling mesocotyl development during the passage from darkness to light
3
作者 Yusong Lyu Xiangjin Wei +10 位作者 Min Zhong Shipeng Niu Shakeel Ahmad Gaoneng Shao Guiai Jiao Zhonghua Sheng Lihong Xie Shikai Hu yawen wu Shaoqing Tang Peisong Hu 《The Crop Journal》 SCIE CSCD 2020年第6期918-928,共11页
The mesocotyl,a structure located between the basal part of the seminal root and the coleoptile node of seedlings,contributes to pushing the shoot tip through the soil surface,a function that is essential for the unif... The mesocotyl,a structure located between the basal part of the seminal root and the coleoptile node of seedlings,contributes to pushing the shoot tip through the soil surface,a function that is essential for the uniform emergence of direct-seeded rice.Its elongation is inhibited by light and induced in darkness.This investigation of an indica rice(P25)with vigorous mesocotyl elongation was aimed at identifying the"omics"basis of its lightinduced growth inhibition.A transcriptomic comparison between mesocotyl tissues that had developed in the dark and then been exposed to light identified many differentially expressed genes(DEGs)and differentially abundant micro RNAs(mi RNAs).Degradome sequencing analysis revealed 27 negative mi RNA-target pairs.A co-expression regulatory network was constructed based on the mi RNAs,their corresponding targets,and DEGs with a common Gene Ontology term.It suggested that auxin and light,probably antagonistically,affect mesocotyl elongation by regulating polyamine oxidase activity. 展开更多
关键词 Oryza sativa L. MESOCOTYL TRANSCRIPTOME MicroRNAome DEGRADOME
下载PDF
Current advances in the biotechnological synthesis of betulinic acid:new findings and practical applications
4
作者 yawen wu Zhenbo Yuan Yijian Rao 《Systems Microbiology and Biomanufacturing》 2023年第2期179-192,共14页
Betulinic acid(BA),a penta-cyclic triterpenoid found as a ubiquitous secondary metabolite throughout the plant kingdom,has aroused tremendous interests due to its different pharmacological properties,which lead to lar... Betulinic acid(BA),a penta-cyclic triterpenoid found as a ubiquitous secondary metabolite throughout the plant kingdom,has aroused tremendous interests due to its different pharmacological properties,which lead to large market demand.However,the content of BA in plant is low for phytoextraction.Although chemical semi-synthesis or biotransformation of BA from betulin with high conversion efficiency is achieved,it still relies on phytoextraction from the bark of medicinal trees.To circumvent this issue,the biotechnological synthesis of BA in engineered yeasts has been developed.In this review,the pharmacological properties of BA are first summarized,including antitumor,anti-HIV,antiprotozoal,anti-inflammatory,apoptosis activator and anti-metabolic syndrome.Then,the traditional phytoextraction,semi-synthesis and biotechnological synthesis of BA are discussed.Particularly,current advances in its biotechnological synthesis and strategies to improve BA production are focused.Moreover,potential strategies for further promotion of BA yield,including the introduction of artificial isopentenol utilization pathway,semi-rational mutagenesis of lupeol synthase and cytochrome P450,and subcellular morphology and compartmentalization,are discussed. 展开更多
关键词 Betulinic acid BIOSYNTHESIS Lupeol synthase CYP716A subfamily
原文传递
GBSS-BINDING PROTEIN,encoding a CBM48 domain-containing protein,affects rice quality and yield^∞ 被引量:14
5
作者 Wei Wang Xiangjin Wei +8 位作者 Guiai Jiao Wenqiang Chen yawen wu Zhonghua Sheng Shikai Hu Lihong Xie Jiayu Wang Shaoqing Tang Peisong Hu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2020年第7期948-966,共19页
The percentage of amylose in the endosperm of rice(Oryza sativa)largely determines grain cooking and eating qualities.Granule-bound starch synthase I(GBSSI)and GBSSII are responsible for amylose biosynthesis in the en... The percentage of amylose in the endosperm of rice(Oryza sativa)largely determines grain cooking and eating qualities.Granule-bound starch synthase I(GBSSI)and GBSSII are responsible for amylose biosynthesis in the endosperm and leaf,respectively.Here,we identified OsGBP,a rice GBSS-binding protein that interacted with GBSSI and GBSSII in vitro and in vivo.The total starch and amylose contents in osgbp mutants were significantly lower than those of wild type in leaves and grains,resulting in reduced grain weight and quality.The carbohydrate-binding module 48(CBM48)domain present in the C-terminus of OsGBP is crucial for OsGBP binding to starch.In the osgbp mutant,the extent of GBSSI and GBSSII binding to starch in the leaf and endospermwas significantly lower than wild type.Our data suggest that OsGBP plays an important role in leaf and endosperm starch biosynthesis by mediating the binding of GBSS proteins to developing starch granules.This elucidation of the function of OsGBP enhances our understanding of the molecular basis of starch biosyn-thesis in rice and contributes information that can be potentially used for the genetic improvement of yield and grain quality. 展开更多
关键词 SATIVA STARCH COOKING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部