Ammonia(NH_(3))synthesis via electrocatalytic nitrogen reduction generally suffers from low NH_(3)yield and faradaic efficiency.Compared with activating stable,low-solubility N_(2),the electrochemical conversion of ni...Ammonia(NH_(3))synthesis via electrocatalytic nitrogen reduction generally suffers from low NH_(3)yield and faradaic efficiency.Compared with activating stable,low-solubility N_(2),the electrochemical conversion of nitrates to ammonia provides a more reasonable route for NH_(3)production.Herein,we introduce Ar-plasma to enhance the interaction between copper-nickel alloys and carbon substrate to improve the performance of NH_(3)production.The NH_(3)faradaic efficiency from nitrate is nearly 100%and the yield rate is over 6000μgNH_(3)cm^(−2)h^(−1).DFT(density functional theory)calculation reveals the high performance of Cu_(50)Ni_(50)originates from the lower energy barrier on the reaction path and the closer position to the Fermi level of the d-band center.This work offers a promising strategy for plasma-modified electrocatalyst to promote ammonia synthesis via nitrate reduction.展开更多
基金supported by the National Natural Science Foundation of China(No.51976191)the State Key Laboratory of Clean Energy Utilization(No.ZJUCEU2021003),Ecological civilization project,Zhejiang University and the Fundamental Research Funds for the Central Universities.
文摘Ammonia(NH_(3))synthesis via electrocatalytic nitrogen reduction generally suffers from low NH_(3)yield and faradaic efficiency.Compared with activating stable,low-solubility N_(2),the electrochemical conversion of nitrates to ammonia provides a more reasonable route for NH_(3)production.Herein,we introduce Ar-plasma to enhance the interaction between copper-nickel alloys and carbon substrate to improve the performance of NH_(3)production.The NH_(3)faradaic efficiency from nitrate is nearly 100%and the yield rate is over 6000μgNH_(3)cm^(−2)h^(−1).DFT(density functional theory)calculation reveals the high performance of Cu_(50)Ni_(50)originates from the lower energy barrier on the reaction path and the closer position to the Fermi level of the d-band center.This work offers a promising strategy for plasma-modified electrocatalyst to promote ammonia synthesis via nitrate reduction.