The flow characteristics and inclusion removal in a ten-strand continuous casting tundish were investigated with physical modelling and industrial trials. The results show that, among the strands, the strand with the ...The flow characteristics and inclusion removal in a ten-strand continuous casting tundish were investigated with physical modelling and industrial trials. The results show that, among the strands, the strand with the mini mum dimensionless time of the first appearance of tracer at the tundish exit appears to be the worst one for inclusion removal, while the strand with the maximum dimensionless mean residence time shows the best inclusion removal efficiency. The inclusion number decreases with increasing inclusion size for all strands. The inclusion number distri bution among strands is the same for all inclusion sizes and the descending order of inclusion number is basically con sistent with the ascending order of dimensionless mean residence time among individual strands. However, when the strand with the minimum dimensionless time of the first appearance of tracer at the tundish exit is not the same one with the minimum dimensionless mean residence time, the former seems to be inferior to the latter for inclusion re moval.展开更多
基金Item Sponsored by National Natural Science Foundation of China(51474059,51204042)Fundamental Research Funds for the Central Universities of China(N140205003,L1502006)
文摘The flow characteristics and inclusion removal in a ten-strand continuous casting tundish were investigated with physical modelling and industrial trials. The results show that, among the strands, the strand with the mini mum dimensionless time of the first appearance of tracer at the tundish exit appears to be the worst one for inclusion removal, while the strand with the maximum dimensionless mean residence time shows the best inclusion removal efficiency. The inclusion number decreases with increasing inclusion size for all strands. The inclusion number distri bution among strands is the same for all inclusion sizes and the descending order of inclusion number is basically con sistent with the ascending order of dimensionless mean residence time among individual strands. However, when the strand with the minimum dimensionless time of the first appearance of tracer at the tundish exit is not the same one with the minimum dimensionless mean residence time, the former seems to be inferior to the latter for inclusion re moval.