Implantable biomedical devices require an anti-biofouling,mechanically robust,low friction surface for a prolonged lifespan and improved performance.However,there exist no methods that could provide uniform and effect...Implantable biomedical devices require an anti-biofouling,mechanically robust,low friction surface for a prolonged lifespan and improved performance.However,there exist no methods that could provide uniform and effective coatings for medical devices with complex shapes and materials to prevent immune-related side effects and thrombosis when they encounter biological tissues.Here,we report a lubricant skin(L-skin),a coating method based on the application of thin layers of bio-adhesive and lubricant-swellable perfluoropolymer that impart anti-biofouling,frictionless,robust,and heat-mediated self-healing properties.We demonstrate biocompatible,mechanically robust,and sterilization-safe L-skin in applications of bioprinting,microfluidics,catheter,and long and narrow medical tubing.We envision that diverse applications of L-skin improve device longevity,as well as anti-biofouling attributes in biomedical devices with complex shapes and material compositions.展开更多
基金This research was supported by Nano⋅Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(NRF-2021M3H4A1A03048658,NRF-2021M3H4A1A04092883).
文摘Implantable biomedical devices require an anti-biofouling,mechanically robust,low friction surface for a prolonged lifespan and improved performance.However,there exist no methods that could provide uniform and effective coatings for medical devices with complex shapes and materials to prevent immune-related side effects and thrombosis when they encounter biological tissues.Here,we report a lubricant skin(L-skin),a coating method based on the application of thin layers of bio-adhesive and lubricant-swellable perfluoropolymer that impart anti-biofouling,frictionless,robust,and heat-mediated self-healing properties.We demonstrate biocompatible,mechanically robust,and sterilization-safe L-skin in applications of bioprinting,microfluidics,catheter,and long and narrow medical tubing.We envision that diverse applications of L-skin improve device longevity,as well as anti-biofouling attributes in biomedical devices with complex shapes and material compositions.