Based on analysis and evaluation on the circular, cosine type, constant-speed offset type and ladder type lane change trajectory, this paper proposes an intelligent vehicle lane change trajectory model under multiple ...Based on analysis and evaluation on the circular, cosine type, constant-speed offset type and ladder type lane change trajectory, this paper proposes an intelligent vehicle lane change trajectory model under multiple barriers, proposes its dynamic constraints in the light of the cellular automata theory, obtains the desired lane change trajectory using this method, and finally changes into a simple coefficient selection problem. Secondly, based on the quadratic optimal control theory, this paper proposes a state space analysis method of intelligent vehicle lateral control, and designs an optimal controller for lateral stability of H2 vehicles. The computer simulation results show that compared with other vehicle trajectory methods, the method in this paper is able to simply and rapidly describe the trajectory, and can describe the intelligent vehicle lane change trajectory under a variety of situations, wherein the controller is reliable and capable of fast convergence.展开更多
文摘Based on analysis and evaluation on the circular, cosine type, constant-speed offset type and ladder type lane change trajectory, this paper proposes an intelligent vehicle lane change trajectory model under multiple barriers, proposes its dynamic constraints in the light of the cellular automata theory, obtains the desired lane change trajectory using this method, and finally changes into a simple coefficient selection problem. Secondly, based on the quadratic optimal control theory, this paper proposes a state space analysis method of intelligent vehicle lateral control, and designs an optimal controller for lateral stability of H2 vehicles. The computer simulation results show that compared with other vehicle trajectory methods, the method in this paper is able to simply and rapidly describe the trajectory, and can describe the intelligent vehicle lane change trajectory under a variety of situations, wherein the controller is reliable and capable of fast convergence.