Although ammonium dinitramide(ADN)has been targeted as a potential green monopropellant in future space vehicles,its application potential in Micro-electrical–Mechanical System(MEMS)thrusters or microthrusters has be...Although ammonium dinitramide(ADN)has been targeted as a potential green monopropellant in future space vehicles,its application potential in Micro-electrical–Mechanical System(MEMS)thrusters or microthrusters has been seldom reported in open literature.In this paper,electrolytic decomposition of Ammonium Dinitramide(ADN)-based liquid monopropellant FLP-103 was carried out in an open chamber and MEMS thrusters were fabricated from poly-dimethylsiloxane(PDMS)to characterize the power consumption.Two thrust measurement methods were employed to investigate the electrolytic decomposition of FLP-103 in MEMS microthrusters.The results show that the monopropellant can be successfully ignited at room temperature through 80 V,0.1 A(8 W)using copper wire as electrodes.In the current thruster design,low thrust was obtained at FLP-103 flowrate of 40μl·min^(-1)but it generated the highest specific impulse,Isp,among all the flowrates tested.The experiments successfully demonstrated the potential application of electrolytic decomposition of FLP-103 in MEMS thrusters.展开更多
The effects induced by streamwise conduction on the thermal characteristics of forced convection for single-phase liquid flow in rectangular microchannel heat sinks under imposed constant wall temperature have been st...The effects induced by streamwise conduction on the thermal characteristics of forced convection for single-phase liquid flow in rectangular microchannel heat sinks under imposed constant wall temperature have been studied. By employing the fin approach in the first law of analysis, models with and without streamwise conduction term in the energy equation were developed for hydrodynamically and thermally fully-developed flow under local thermal non-equilibrium for the solid and fluid phases. These two models were solved to obtain closed form analytical solutions for the fluid and solid temperature distributions and the analysis emphasized details of the variations induced by the streamwise conduction on the fluid temperature distributions. The effects of the Peclet number, aspect ratio, and thermal conductivity ratio on the thermal characteristics of forced convection in microchannel heat sinks were analyzed and discussed. This study reveals the conditions under which the effect of streamwise conduction is significant and should not be neglected in the forced convective heat transfer analysis of microchannel heat sinks.展开更多
基金Supported by the Project of Ministry of Science,Technology and Innovation,Malaysia(MOSTI)(No.04-02-12-SF0160)
文摘Although ammonium dinitramide(ADN)has been targeted as a potential green monopropellant in future space vehicles,its application potential in Micro-electrical–Mechanical System(MEMS)thrusters or microthrusters has been seldom reported in open literature.In this paper,electrolytic decomposition of Ammonium Dinitramide(ADN)-based liquid monopropellant FLP-103 was carried out in an open chamber and MEMS thrusters were fabricated from poly-dimethylsiloxane(PDMS)to characterize the power consumption.Two thrust measurement methods were employed to investigate the electrolytic decomposition of FLP-103 in MEMS microthrusters.The results show that the monopropellant can be successfully ignited at room temperature through 80 V,0.1 A(8 W)using copper wire as electrodes.In the current thruster design,low thrust was obtained at FLP-103 flowrate of 40μl·min^(-1)but it generated the highest specific impulse,Isp,among all the flowrates tested.The experiments successfully demonstrated the potential application of electrolytic decomposition of FLP-103 in MEMS thrusters.
文摘The effects induced by streamwise conduction on the thermal characteristics of forced convection for single-phase liquid flow in rectangular microchannel heat sinks under imposed constant wall temperature have been studied. By employing the fin approach in the first law of analysis, models with and without streamwise conduction term in the energy equation were developed for hydrodynamically and thermally fully-developed flow under local thermal non-equilibrium for the solid and fluid phases. These two models were solved to obtain closed form analytical solutions for the fluid and solid temperature distributions and the analysis emphasized details of the variations induced by the streamwise conduction on the fluid temperature distributions. The effects of the Peclet number, aspect ratio, and thermal conductivity ratio on the thermal characteristics of forced convection in microchannel heat sinks were analyzed and discussed. This study reveals the conditions under which the effect of streamwise conduction is significant and should not be neglected in the forced convective heat transfer analysis of microchannel heat sinks.