Li metal anode holds great promise to realize high-energy battery systems.However,the safety issue and limited lifetime caused by the uncontrollable growth of Li dendrites hinder its commercial application.Herein,an i...Li metal anode holds great promise to realize high-energy battery systems.However,the safety issue and limited lifetime caused by the uncontrollable growth of Li dendrites hinder its commercial application.Herein,an interlayer-bridged 3D lithiophilic rGO-Ag-S-CNT composite is proposed to guide uniform and stable Li plating/stripping.The 3D lithiophilic rGO-Ag-S-CNT host is fabricated by incorporating Ag-modified reduced graphene oxide(rGO)with S-doped carbon nanotube(CNT),where the rGO and CNT are closely connected via robust Ag-S covalent bond.This strong Ag-S bond could enhance the structural stability and electrical connection between rGO and CNT,significantly improving the electrochemical kinetics and uniformity of current distribution.Moreover,density functional theory calculation indicates that the introduction of Ag-S bond could further boost the binding energy between Ag and Li,which promotes homogeneous Li nucleation and growth.Consequently,the rGO-Ag-S-CNT-based anode achieves a lower overpotential(7.3 mV at 0.5 mA cm^(−2)),higher Coulombic efficiency(98.1%at 0.5 mA cm^(−2)),and superior long cycling performance(over 500 cycles at 2 mA cm−2)as compared with the rGO-Ag-CNT-and rGO-CNT-based anodes.This work provides a universal avenue and guidance to build a robust Li metal host via constructing a strong covalent bond,effectively suppressing the Li dendrites growth to prompt the development of Li metal battery.展开更多
The unique structural features of hard carbon(HC)make it a promising anode candidate for sodium-ion batteries(SIB).However,traditional methods of preparing HC require special equipment,long reaction times,and large en...The unique structural features of hard carbon(HC)make it a promising anode candidate for sodium-ion batteries(SIB).However,traditional methods of preparing HC require special equipment,long reaction times,and large energy consumption,resulting in low throughputs and efficiency.In our contribution,a novel synthesis method is proposed,involving the formation of HC nanosheets(NS-CNs)within minutes by creating an anoxic environment through flame combustion and further introducing sulfur and nitrogen sources to achieve heteroatom doping.The effect of heterogeneous element doping on the microstructure of HC is quantitatively analyzed by high-resolution transmission electron microscopy and image processing technology.Combined with density functional theory calculation,it is verified that the functionalized HC exhibits stronger Na^(+)adsorption ability,electron gain ability,and Na^(+) migration ability.As a result,NS-CNs as SIB anodes provide an ultrahigh reversible capacity of 542.7mAh g^(-1) at 0.1Ag^(-1),and excellent rate performance with a reversible capacity of 236.4mAh g^(-1) at 2Ag^(-1) after 1200 cycles.Furthermore,full cell assembled with NS-CNs as the can present 230mAh g^(-1) at 0.5Ag^(-1) after 150 cycles.Finally,in/ex situ techniques confirm that the excellent sodium storage properties of NS-CNs are due to the construction of abundant active sites based on the novel synthesis method for realizing the reversible adsorption of Na^(+).This work provides a novel strategy to develop novel carbons and gives deep insights for the further investigation of facile preparation methods to develop high-performance carbon anodes for alkali-ion batteries.展开更多
基金This work is supported by Singapore Ministry of Education academic research grant Tier 2 (MOE2019-T2-1-181).
文摘Li metal anode holds great promise to realize high-energy battery systems.However,the safety issue and limited lifetime caused by the uncontrollable growth of Li dendrites hinder its commercial application.Herein,an interlayer-bridged 3D lithiophilic rGO-Ag-S-CNT composite is proposed to guide uniform and stable Li plating/stripping.The 3D lithiophilic rGO-Ag-S-CNT host is fabricated by incorporating Ag-modified reduced graphene oxide(rGO)with S-doped carbon nanotube(CNT),where the rGO and CNT are closely connected via robust Ag-S covalent bond.This strong Ag-S bond could enhance the structural stability and electrical connection between rGO and CNT,significantly improving the electrochemical kinetics and uniformity of current distribution.Moreover,density functional theory calculation indicates that the introduction of Ag-S bond could further boost the binding energy between Ag and Li,which promotes homogeneous Li nucleation and growth.Consequently,the rGO-Ag-S-CNT-based anode achieves a lower overpotential(7.3 mV at 0.5 mA cm^(−2)),higher Coulombic efficiency(98.1%at 0.5 mA cm^(−2)),and superior long cycling performance(over 500 cycles at 2 mA cm−2)as compared with the rGO-Ag-CNT-and rGO-CNT-based anodes.This work provides a universal avenue and guidance to build a robust Li metal host via constructing a strong covalent bond,effectively suppressing the Li dendrites growth to prompt the development of Li metal battery.
基金supported by the National Natural Science Foundation of China (Grant Nos.51872236,52072307)MOE SUTD Kickstarter Innitiative (SKI 2021_02_16).
文摘The unique structural features of hard carbon(HC)make it a promising anode candidate for sodium-ion batteries(SIB).However,traditional methods of preparing HC require special equipment,long reaction times,and large energy consumption,resulting in low throughputs and efficiency.In our contribution,a novel synthesis method is proposed,involving the formation of HC nanosheets(NS-CNs)within minutes by creating an anoxic environment through flame combustion and further introducing sulfur and nitrogen sources to achieve heteroatom doping.The effect of heterogeneous element doping on the microstructure of HC is quantitatively analyzed by high-resolution transmission electron microscopy and image processing technology.Combined with density functional theory calculation,it is verified that the functionalized HC exhibits stronger Na^(+)adsorption ability,electron gain ability,and Na^(+) migration ability.As a result,NS-CNs as SIB anodes provide an ultrahigh reversible capacity of 542.7mAh g^(-1) at 0.1Ag^(-1),and excellent rate performance with a reversible capacity of 236.4mAh g^(-1) at 2Ag^(-1) after 1200 cycles.Furthermore,full cell assembled with NS-CNs as the can present 230mAh g^(-1) at 0.5Ag^(-1) after 150 cycles.Finally,in/ex situ techniques confirm that the excellent sodium storage properties of NS-CNs are due to the construction of abundant active sites based on the novel synthesis method for realizing the reversible adsorption of Na^(+).This work provides a novel strategy to develop novel carbons and gives deep insights for the further investigation of facile preparation methods to develop high-performance carbon anodes for alkali-ion batteries.