Biofouling is a major obstacle to the efficient extraction of uranium from seawater due to the numerous marine microorganisms in the ocean.Herein,we report a novel amidoxime(AO)crystalline covalent organic framework(B...Biofouling is a major obstacle to the efficient extraction of uranium from seawater due to the numerous marine microorganisms in the ocean.Herein,we report a novel amidoxime(AO)crystalline covalent organic framework(BD-TN-AO)by Knoevenagel condensation reaction of 2,2′,2″-(benzene-1,3,5-triyl)triacetonitrile(TN)and 4,4′-(buta-1,3-diyne1,4-diyl)dibenzaldehyde(BD)that is highly conjugated and possesses excellent photocatalytic activity.The excellent photocatalytic activity endows the BDTN-AO high anti-biofouling activity by producing biotoxic reactive oxygen species(ROS)and photogenerated electrons to efficiently reduce the loaded U(VI)to insoluble U(IV).Meanwhile,the surfacepositive electric field has strong electrostatic attraction to the negative[UO2(CO3)3]4−in seawater,which can significantly enhance the extraction capacity of uranium.Benefiting from these outstanding photoinduced effects of BD-TN-AO,the adsorbent exhibits a high uranium adsorption capacity of 5.9 mg g−1 under simulated sunlight irradiation in microorganism-containing natural seawater,which is 1.48 times the adsorption capacity in darkness.展开更多
基金The authors gratefully acknowledge support from the National Natural Science Foundation of China(nos.22036003,21775065,and 21976077).
文摘Biofouling is a major obstacle to the efficient extraction of uranium from seawater due to the numerous marine microorganisms in the ocean.Herein,we report a novel amidoxime(AO)crystalline covalent organic framework(BD-TN-AO)by Knoevenagel condensation reaction of 2,2′,2″-(benzene-1,3,5-triyl)triacetonitrile(TN)and 4,4′-(buta-1,3-diyne1,4-diyl)dibenzaldehyde(BD)that is highly conjugated and possesses excellent photocatalytic activity.The excellent photocatalytic activity endows the BDTN-AO high anti-biofouling activity by producing biotoxic reactive oxygen species(ROS)and photogenerated electrons to efficiently reduce the loaded U(VI)to insoluble U(IV).Meanwhile,the surfacepositive electric field has strong electrostatic attraction to the negative[UO2(CO3)3]4−in seawater,which can significantly enhance the extraction capacity of uranium.Benefiting from these outstanding photoinduced effects of BD-TN-AO,the adsorbent exhibits a high uranium adsorption capacity of 5.9 mg g−1 under simulated sunlight irradiation in microorganism-containing natural seawater,which is 1.48 times the adsorption capacity in darkness.