Poly(butylene succinate)(PBS)exhibits many advantages,such as renewability,biodegradability,and impressive thermal and mechanical properties,but is limited by the low melt viscosity and strength resulted from the line...Poly(butylene succinate)(PBS)exhibits many advantages,such as renewability,biodegradability,and impressive thermal and mechanical properties,but is limited by the low melt viscosity and strength resulted from the linear structure.To address this,vitrimeric network was introduced to synthesize PBS vitrimers(PBSVs)based on dynamic imine bonds through melt polymerization of hydroxyl-terminated PBS with vanillin derived imine containing compound and hexamethylene diisocyanate using trimethylolpropane as a crosslinking monomer.PBSVs with different crosslinking degrees were synthesized through changing the content of the crosslinking monomer.The effect of crosslinking degree on the thermal,theological,mechanical properties,and stress relaxation behavior of the PBSVs was studied in detail.The results demonstrated that the melt viscosity,melt strength,and heat resistance were enhanced substantially without obvious depression in crystallizability,thermal stability,and mechanical properties through increasing crosslinking degree.In addition,the PBSVs exhibit thermal reprocessability with mechanical properties recovered by more than 90%even after processing for three times.Furthermore,PBSV with improved melt properties shows significantly improved foamability compared to commercial PBS.This research contributes to the advancement of polymer technology by successfully developing PBS vitrimers with improved properties,showcasing their potential applications in sustainable and biodegradable materials.展开更多
In order to extend the application of epoxy vitrimer, 1,4-cyclohexanedicarboxylic acid(CHDA) was used as a co-curing agent and structure modifier for sebacic acid(SA) cured diglycidyl ether of bisphenol A(DGEBA)...In order to extend the application of epoxy vitrimer, 1,4-cyclohexanedicarboxylic acid(CHDA) was used as a co-curing agent and structure modifier for sebacic acid(SA) cured diglycidyl ether of bisphenol A(DGEBA) epoxy vitrimer to tailor the mechanical properties of epoxy vitrimers with 1,5,7-triazabicylo[4.4.0]dec-5-ene(TBD) as a transesterification catalyst. The glass transition temperature(Tg) of vitrimer increased gradually with the increase in CHDA content. Vitrimers behaved from elastomer to tough and hard plastics were successfully achieved by varying the feed ratio of CHDA to SA. Both the Young's modulus and storage modulus increased apparently with the increase in CHDA content. Stress relaxation measurement indicated that more prominent stress relaxation occurred at elevated temperatures and the stress relaxation decreased with the increase of CHDA content due to the reduced mobility of the vitrimer backbone. The vitrimers showed excellent recyclability as evidenced by the unchanged gel fraction and mechanical properties after compression molded for several times. With tunable mechanical properties, the epoxy vitrimers may find extensive potential applications.展开更多
Sustainable polyurethanes prepared from castor oil and diisocyanates show very low strength and toughness, due to the highly cross-linked and flexible structure. Herein, we report a new strategy to simultaneously rein...Sustainable polyurethanes prepared from castor oil and diisocyanates show very low strength and toughness, due to the highly cross-linked and flexible structure. Herein, we report a new strategy to simultaneously reinforce and toughen castor oil-based polyurethane via incorporating a stiff component (isosorbide, IS) to enhance network stiffness and reduce crosslink density. The crosslinking degree de- creases while the strength, moduli, ductility and heat re- sistance significantly increase accordingly with increasing IS content. The tensile behaviors are tunable over a broad range (either as elastomers or as plastics) depending on the com- positions. The polyurethanes show excellent thermal stability with onset decomposition temperature higher than 280℃. The investigation provides a new hint for future design and fab- rication of high performance sustainable polymers from other vegetable oils.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51973176)the Chongqing Talent Plan for Young Top-Notch Talents(No.CQYC2021059217)the Fundamental Research Funds for the Central Universities(No.SWUXDJH202314)。
文摘Poly(butylene succinate)(PBS)exhibits many advantages,such as renewability,biodegradability,and impressive thermal and mechanical properties,but is limited by the low melt viscosity and strength resulted from the linear structure.To address this,vitrimeric network was introduced to synthesize PBS vitrimers(PBSVs)based on dynamic imine bonds through melt polymerization of hydroxyl-terminated PBS with vanillin derived imine containing compound and hexamethylene diisocyanate using trimethylolpropane as a crosslinking monomer.PBSVs with different crosslinking degrees were synthesized through changing the content of the crosslinking monomer.The effect of crosslinking degree on the thermal,theological,mechanical properties,and stress relaxation behavior of the PBSVs was studied in detail.The results demonstrated that the melt viscosity,melt strength,and heat resistance were enhanced substantially without obvious depression in crystallizability,thermal stability,and mechanical properties through increasing crosslinking degree.In addition,the PBSVs exhibit thermal reprocessability with mechanical properties recovered by more than 90%even after processing for three times.Furthermore,PBSV with improved melt properties shows significantly improved foamability compared to commercial PBS.This research contributes to the advancement of polymer technology by successfully developing PBS vitrimers with improved properties,showcasing their potential applications in sustainable and biodegradable materials.
基金financially supported by the National Natural Science Foundation of China (No.51703188)Fundamental Research Funds for the Central Universities (Nos.XDJK2017A016 and XDJK2017C022)
文摘In order to extend the application of epoxy vitrimer, 1,4-cyclohexanedicarboxylic acid(CHDA) was used as a co-curing agent and structure modifier for sebacic acid(SA) cured diglycidyl ether of bisphenol A(DGEBA) epoxy vitrimer to tailor the mechanical properties of epoxy vitrimers with 1,5,7-triazabicylo[4.4.0]dec-5-ene(TBD) as a transesterification catalyst. The glass transition temperature(Tg) of vitrimer increased gradually with the increase in CHDA content. Vitrimers behaved from elastomer to tough and hard plastics were successfully achieved by varying the feed ratio of CHDA to SA. Both the Young's modulus and storage modulus increased apparently with the increase in CHDA content. Stress relaxation measurement indicated that more prominent stress relaxation occurred at elevated temperatures and the stress relaxation decreased with the increase of CHDA content due to the reduced mobility of the vitrimer backbone. The vitrimers showed excellent recyclability as evidenced by the unchanged gel fraction and mechanical properties after compression molded for several times. With tunable mechanical properties, the epoxy vitrimers may find extensive potential applications.
基金supported by the National Natural Science Foundation of China (51703188)the Basic and Frontier Research Project of Chongqing (cstc2017jcyj AX0426)the Fundamental Research Funds for the Central Universities (XDJK2017A016 and XDJK2017C022)
文摘Sustainable polyurethanes prepared from castor oil and diisocyanates show very low strength and toughness, due to the highly cross-linked and flexible structure. Herein, we report a new strategy to simultaneously reinforce and toughen castor oil-based polyurethane via incorporating a stiff component (isosorbide, IS) to enhance network stiffness and reduce crosslink density. The crosslinking degree de- creases while the strength, moduli, ductility and heat re- sistance significantly increase accordingly with increasing IS content. The tensile behaviors are tunable over a broad range (either as elastomers or as plastics) depending on the com- positions. The polyurethanes show excellent thermal stability with onset decomposition temperature higher than 280℃. The investigation provides a new hint for future design and fab- rication of high performance sustainable polymers from other vegetable oils.