To implement the Tsinghua Thomson Scattering X-ray Source upgrade plan and the Very Compact Inverse Compton Scattering Gamma-ray Source (VIGAS) program, a new 1.5-m traveling-wave accelerating structure was designed t...To implement the Tsinghua Thomson Scattering X-ray Source upgrade plan and the Very Compact Inverse Compton Scattering Gamma-ray Source (VIGAS) program, a new 1.5-m traveling-wave accelerating structure was designed to replace the old 3-m SLAC-type structure with the aim of increasing the accelerating gradient from15 to 30 MV/m. The new type of structure works in the 3π/4 mode with a comparatively low group velocity varying from 0.007c to 0.003c to increase the accelerating gradient at a given power. An elliptical iris was employed to reduce the surface field enhancement. The filling process of the low-group-velocity structure was analyzed using a circuit model. After fabrication, the structure was precisely tuned using the non-contact tuning method, followed by detailed low-power radiofrequency measurements. The structure was first installed and utilized at a beamline for the terahertz experiment at Tsinghua University. After 120 h of conditioning, it is now operating at a gradient of 24.2 MV/m and a 20.7-MW input power, with the klystron operating at its full power. It is expected to generate an accelerating gradient of 30 MV/m when the klystron power is upgraded to 30 MW in the near future.展开更多
We operated a p-type point contact high purity germanium(PPCGe)detector(CDEX-1B,1.008 kg)in the China Jinping Underground Laboratory(CJPL)for 500.3 days to search for neutrinoless double beta(0νββ)decay of^(76)Ge.A...We operated a p-type point contact high purity germanium(PPCGe)detector(CDEX-1B,1.008 kg)in the China Jinping Underground Laboratory(CJPL)for 500.3 days to search for neutrinoless double beta(0νββ)decay of^(76)Ge.A total of 504.3 kg⋅day effective exposure data was accumulated.The anti-coincidence and the multi/single-site event(MSE/SSE)discrimination methods were used to suppress the background in the energy region of interest(ROI,1989–2089 keV for this work)with a factor of 23.A background level of 0.33 counts/(keV⋅kg⋅yr)was realized.The lower limit on the half life of^(76)Ge 0νββdecay was constrained as T_(1/2)^(0ν)>1.0×10^(23)yr(90%C.L.),corresponding to the upper limits on the effective Majorana neutrino mass:<mββ><3.2–7.5 eV.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.11922504 and 12027902).
文摘To implement the Tsinghua Thomson Scattering X-ray Source upgrade plan and the Very Compact Inverse Compton Scattering Gamma-ray Source (VIGAS) program, a new 1.5-m traveling-wave accelerating structure was designed to replace the old 3-m SLAC-type structure with the aim of increasing the accelerating gradient from15 to 30 MV/m. The new type of structure works in the 3π/4 mode with a comparatively low group velocity varying from 0.007c to 0.003c to increase the accelerating gradient at a given power. An elliptical iris was employed to reduce the surface field enhancement. The filling process of the low-group-velocity structure was analyzed using a circuit model. After fabrication, the structure was precisely tuned using the non-contact tuning method, followed by detailed low-power radiofrequency measurements. The structure was first installed and utilized at a beamline for the terahertz experiment at Tsinghua University. After 120 h of conditioning, it is now operating at a gradient of 24.2 MV/m and a 20.7-MW input power, with the klystron operating at its full power. It is expected to generate an accelerating gradient of 30 MV/m when the klystron power is upgraded to 30 MW in the near future.
基金Supported by the National Key Research and Development Program of China(2017YFA0402201,2022YFA1604701,2022YFA1605000)the National Natural Science Foundation of China(12322511,12175112,12005111,11725522)。
文摘We operated a p-type point contact high purity germanium(PPCGe)detector(CDEX-1B,1.008 kg)in the China Jinping Underground Laboratory(CJPL)for 500.3 days to search for neutrinoless double beta(0νββ)decay of^(76)Ge.A total of 504.3 kg⋅day effective exposure data was accumulated.The anti-coincidence and the multi/single-site event(MSE/SSE)discrimination methods were used to suppress the background in the energy region of interest(ROI,1989–2089 keV for this work)with a factor of 23.A background level of 0.33 counts/(keV⋅kg⋅yr)was realized.The lower limit on the half life of^(76)Ge 0νββdecay was constrained as T_(1/2)^(0ν)>1.0×10^(23)yr(90%C.L.),corresponding to the upper limits on the effective Majorana neutrino mass:<mββ><3.2–7.5 eV.