期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Detection of influential nodes with multi-scale information
1
作者 Jing-En Wang San-Yang Liu +1 位作者 Ahmed Aljmiai yi-guang bai 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期575-582,共8页
The identification of influential nodes in complex networks is one of the most exciting topics in network science.The latest work successfully compares each node using local connectivity and weak tie theory from a new... The identification of influential nodes in complex networks is one of the most exciting topics in network science.The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective.We study the structural properties of networks in depth and extend this successful node evaluation from single-scale to multi-scale.In particular,one novel position parameter based on node transmission efficiency is proposed,which mainly depends on the shortest distances from target nodes to high-degree nodes.In this regard,the novel multi-scale information importance(MSII)method is proposed to better identify the crucial nodes by combining the network's local connectivity and global position information.In simulation comparisons,five state-of-the-art algorithms,i.e.the neighbor nodes degree algorithm(NND),betweenness centrality,closeness centrality,Katz centrality and the k-shell decomposition method,are selected to compare with our MSII.The results demonstrate that our method obtains superior performance in terms of robustness and spreading propagation for both real-world and artificial networks. 展开更多
关键词 influential nodes MULTI-SCALE network connectivity network transmission
下载PDF
Adenovirus-mediated GDF-5 promotes the extracellular matrix expression in degenerative nucleus pulposus cells 被引量:4
2
作者 Xu-wei LUO Kang LIU +4 位作者 Zhu CHEN Ming ZHAO Xiao-wei HAN yi-guang bai Gang FENG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2016年第1期30-42,共13页
Objective: To construct a recombinant adenovirus vector-carrying human growth and differentiation factor-5 (GDF-5) gene, investigate the biological effects of adenovirus-mediated GDF-5 (Ad-GDF-5) on extracellular... Objective: To construct a recombinant adenovirus vector-carrying human growth and differentiation factor-5 (GDF-5) gene, investigate the biological effects of adenovirus-mediated GDF-5 (Ad-GDF-5) on extracellular matrix (ECM) expression in human degenerative disc nucleus pulposus (NP) cells, and explore a candidate gene therapy method for intervertebral disc degeneration (IDD). Methods: Human NP cells of a degenerative disc were isolated, cultured, and infected with Ad-GDF-5 using the AdEasy-1 adenovirus vector system. On Days 3, 7, 14, and 21, the contents of the sulfated glycosaminoglycan (sGAG), deoxyribonucleic acid (DNA) and hydroxyproline (Hyp), synthesis of proteoglycan and collagen II, gene expression of collagen II and aggrecan, and NP cell proliferation were assessed. Results: The adenovirus was an effective vehicle for gene delivery with prolonged expression of GDF-5. Biochemical analysis revealed increased sGAG and Hyp contents in human NP cells infected by Ad-GDF-5 whereas there was no conspicuous change in basal medium (BM) or Ad-green fluorescent protein (GFP) groups. Only cells in the Ad-GDF-5 group promoted the production of ECM, as demonstrated by the secretion of proteoglycan and up-regulation of collagen II and aggrecan at both protein and mRNA levels. The NP cell proliferation was significantly promoted. Conclusions: The data suggest that Ad-GDF-5 gene therapy is a potential treatment for IDD, which restores the functions of degenerative intervertebral disc through enhancing the ECM production of human NP ceils. 展开更多
关键词 Intervertebral disc Degeneration Growth and differentiation factor-5 (GDF-5) ADENOVIRUS Gene therapy Nucleus pulposus
原文传递
Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes 被引量:5
3
作者 Ming ZHAO Zhu CHEN +6 位作者 Kang LIU Yu-qing WAN Xu-dong LI Xu-wei LUO yi-guang bai Ze-long YANG Gang FENG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2015年第11期914-923,共10页
Objective: In our previous work, we prepared a type of chitosan hydrogel with excellent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was... Objective: In our previous work, we prepared a type of chitosan hydrogel with excellent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was used to repair the articular cartilage defects. Methods: Chitosan hydrogels were prepared with a crosslinker formed by combining 1,6-diisocyanatohexane and polyethylene glycol. Chitosan hydrogel scaffold was seeded with rabbit chondrocytes that had been cultured for one week in vitro to form the preliminary tissue-engineered cartilage. This preliminary tissue-engineered cartilage was then transplanted into the defective rabbit articular cartilage. There were three treatment groups: the experimental group received preliminary tissue-engineered cartilage; the blank group received pure chitosan hydrogels; and, the control group had received no implantation. The knee joints were harvested at predetermined time. The repaired cartilage was analyzed through gross morphology, histologically and immunohistochemically. The repairs were scored according to the international cartilage repair society (ICRS) standard. Results: The gross morphology results suggested that the defects were repaired completely in the experimental group after twelve weeks. The regenerated tissue connected closely with subchondral bone and the boundary with normal tissue was fuzzy. The cartilage lacuna in the regenerated tissue was similar to normal cartilage lacuna. The results of ICRS gross and histological grading showed that there were significant differences among the three groups (P〈0.05). Conclusions: Chondrocytes implanted in the scaffold can adhere, proliferate, and secrete extracellular matrix. The novel tissue-engineered cartilage constructed in our research can completely repair the structure of damaged articular cartilage. 展开更多
关键词 Articular cartilage Chitosan hydrogel REPAIR Tissue engineering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部