Adsorbing tests between CN? and chalcopyrite or galena were conducted firstly, and then flotation tests of the twocyaniding minerals were investigated in butyl xanthate (BX) system. Results showed that the interaction...Adsorbing tests between CN? and chalcopyrite or galena were conducted firstly, and then flotation tests of the twocyaniding minerals were investigated in butyl xanthate (BX) system. Results showed that the interaction between CN? and the twomineral surfaces were both chemical adsorption and can be described by the Langmuir adsorption isotherm model. In the optimumcondition of pH 6.5 and 4.0 mg/L BX, the recovery of cyaniding chalcopyrite and galena reached 82.1% and 63.9%, respectively. BXimproved the hydrophobicity of the surfaces of the two minerals, although CN? reduced the contact angle on the surface of minerals.The inhibitory effect of CN? on chalcopyrite far outweighed galena. Electrostatic adsorption exists in the interaction between BX andthe surface of galena after cyanide treatment in the pH range of 4.2?8.4, while the interactions between BX and the surface ofchalcopyrite after cyanide treatment is chemical adsorption.展开更多
Recent progress on the application of laser-induced breakdown spectroscopy (LIBS) for metallurgical analysis particularly achieved by Chinese research community is briefly reviewed in this article. The content is ma...Recent progress on the application of laser-induced breakdown spectroscopy (LIBS) for metallurgical analysis particularly achieved by Chinese research community is briefly reviewed in this article. The content is mainly focused on the progress in experimental research and calibration methods toward LIBS applications for metallurgical online analysis over the past few years. Different experiment setups such as single-pulse and double-pulses LIBS schematics are introduced. Various calibration methods for different metallic samples are presented. Quantitative results reported in the literature and obtained in the analysis of various samples with different calibration methods are summarized. At the last section of this article, the difficulties of LIBS application for molten metal analysis in a furnace are discussed.展开更多
基金Project(2012BAB08B03)supported by the National Key Technologies R&D Program of China
文摘Adsorbing tests between CN? and chalcopyrite or galena were conducted firstly, and then flotation tests of the twocyaniding minerals were investigated in butyl xanthate (BX) system. Results showed that the interaction between CN? and the twomineral surfaces were both chemical adsorption and can be described by the Langmuir adsorption isotherm model. In the optimumcondition of pH 6.5 and 4.0 mg/L BX, the recovery of cyaniding chalcopyrite and galena reached 82.1% and 63.9%, respectively. BXimproved the hydrophobicity of the surfaces of the two minerals, although CN? reduced the contact angle on the surface of minerals.The inhibitory effect of CN? on chalcopyrite far outweighed galena. Electrostatic adsorption exists in the interaction between BX andthe surface of galena after cyanide treatment in the pH range of 4.2?8.4, while the interactions between BX and the surface ofchalcopyrite after cyanide treatment is chemical adsorption.
基金Acknowledgements We acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 11075184) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. Y03RC21124).
文摘Recent progress on the application of laser-induced breakdown spectroscopy (LIBS) for metallurgical analysis particularly achieved by Chinese research community is briefly reviewed in this article. The content is mainly focused on the progress in experimental research and calibration methods toward LIBS applications for metallurgical online analysis over the past few years. Different experiment setups such as single-pulse and double-pulses LIBS schematics are introduced. Various calibration methods for different metallic samples are presented. Quantitative results reported in the literature and obtained in the analysis of various samples with different calibration methods are summarized. At the last section of this article, the difficulties of LIBS application for molten metal analysis in a furnace are discussed.