The aim of this study is to investigate nonlinear bending for a 3-Dimensional(3D)braided composite cylindrical panel which has transverse loads on its finite length. By refining a micro-macro-mechanical model, the 3...The aim of this study is to investigate nonlinear bending for a 3-Dimensional(3D)braided composite cylindrical panel which has transverse loads on its finite length. By refining a micro-macro-mechanical model, the 3D braided composite can be treated as a representative average cell system. The geometric structural properties of its components deeply depend on their positions in the section of the cylindrical panel. The embedded elastic medium of the panel can be described by a Pasternak elastic foundation. Via using the shell theory of the von Ka′rma′nDonnell type of kinematic nonlinearity, governing equations can be established to get higherorder shear deformation. The mixed Galerkin-perturbation method is applied to get the nonlinear bending behavior of the 3D braided cylindrical panel with a simply supported boundary condition.Based on the analysis of the braided composite cylindrical panel with variable initial stress, geometric parameter, fiber volume fraction, and elastic foundation, serial numerical illustrations are archived to represent the appropriate nonlinear bending responses.展开更多
Failure experiments were carried out through a stretch-bending test system for advanced high strength steels, i.e. dual-phase (DP) steels and martensitic steels (MS). The die radius in this system was designed fro...Failure experiments were carried out through a stretch-bending test system for advanced high strength steels, i.e. dual-phase (DP) steels and martensitic steels (MS). The die radius in this system was designed from 1 to 15 mm to investigate the failure mode under different geometries. Two failure modes were observed during the ex- periments. As a result, critical relative radii (the ratio of inner bending radius R to sheet thickness t) for DP590 and DP780 steels were obtained. The stretch-bending tests of DP980 display some trends unlike DP590 and DP780 steels, and curve of DP980 in different thicknesses does not coincide well. High blank holder force exhibits more possibility of shear fracture tendency than low blank holder force. The unique character of high strength martensitic steel (1500MS) is that no shear fracture is found especially over small bending radius (R =2 mm) under the same experi- mental conditions. Microstructure analysis indicates that there are obviously elongated grains on shear fracture sur- face. It shows smaller diameter and shallower depth of the dimples than the necking failure.展开更多
基金supported in part by grants from the National Natural Science Foundation of China (Nos. 51375308 and 51775346)
文摘The aim of this study is to investigate nonlinear bending for a 3-Dimensional(3D)braided composite cylindrical panel which has transverse loads on its finite length. By refining a micro-macro-mechanical model, the 3D braided composite can be treated as a representative average cell system. The geometric structural properties of its components deeply depend on their positions in the section of the cylindrical panel. The embedded elastic medium of the panel can be described by a Pasternak elastic foundation. Via using the shell theory of the von Ka′rma′nDonnell type of kinematic nonlinearity, governing equations can be established to get higherorder shear deformation. The mixed Galerkin-perturbation method is applied to get the nonlinear bending behavior of the 3D braided cylindrical panel with a simply supported boundary condition.Based on the analysis of the braided composite cylindrical panel with variable initial stress, geometric parameter, fiber volume fraction, and elastic foundation, serial numerical illustrations are archived to represent the appropriate nonlinear bending responses.
基金Item Sponsored by National Natural Science Foundation of China(51075267)International Cooperation Program in Science and Technology of MOST of China(2010DFA72760)
文摘Failure experiments were carried out through a stretch-bending test system for advanced high strength steels, i.e. dual-phase (DP) steels and martensitic steels (MS). The die radius in this system was designed from 1 to 15 mm to investigate the failure mode under different geometries. Two failure modes were observed during the ex- periments. As a result, critical relative radii (the ratio of inner bending radius R to sheet thickness t) for DP590 and DP780 steels were obtained. The stretch-bending tests of DP980 display some trends unlike DP590 and DP780 steels, and curve of DP980 in different thicknesses does not coincide well. High blank holder force exhibits more possibility of shear fracture tendency than low blank holder force. The unique character of high strength martensitic steel (1500MS) is that no shear fracture is found especially over small bending radius (R =2 mm) under the same experi- mental conditions. Microstructure analysis indicates that there are obviously elongated grains on shear fracture sur- face. It shows smaller diameter and shallower depth of the dimples than the necking failure.