A novel technology,modified roasting in CO-CO2 mixed gas and magnetic separation,was presented to recover iron from copper slag.The effects of various parameters such as dosage of flux(CaO),gas flowrate of CO and CO2,...A novel technology,modified roasting in CO-CO2 mixed gas and magnetic separation,was presented to recover iron from copper slag.The effects of various parameters such as dosage of flux(CaO),gas flowrate of CO and CO2,roasting temperature,roasting time,particle size of modified slag and magnetic flux density on the oxidized modification and magnetic separation were investigated by comparison of the X-ray diffraction patterns and iron recovery ratio.The optimum conditions for recovering iron by oxidizing roasting and magnetic separation are as follows:calcium oxide content of 25 wt.%,mixed gas flow rates of CO2 and CO of 180 and 20 mL/min,oxidizing roasting at 1323 K for 2 h,grinding the modified slag to 38.5-25.0μm and magnetic separation at 170 mT.The mineralogical and microstructural characteristics of modified slag revealed that the iron-bearing minerals in the copper slag were oxidized,the generated magnetite grew into large particles,and the silicate in copper slag was combined with calcium oxide to form calcium silicate.Finally,the iron-bearing concentrate with an iron grade of 54.79%and iron recovery ratio of 80.14%was effectively obtained.展开更多
Hydrogen reduction of tungsten oxide is currently the most widely used technology to produce metal tungsten for its simplicity and pollution-free nature.The computer simulation is a powerful tool for exploring the mec...Hydrogen reduction of tungsten oxide is currently the most widely used technology to produce metal tungsten for its simplicity and pollution-free nature.The computer simulation is a powerful tool for exploring the mechanism of hydrogen reduction of tungsten oxide from a microscopic view.The density functional theory(DFT) is applied to investigate the adsorption characteristic of hydrogen molecule on the surface and inside the lattice of WO_(3).The adsorption energy of hydrogen on the WO_(3)(001) surface is 66.56 kJ.mol^(-1) which is larger than the adsorption energy of hydrogen molecule inside the lattice of WO3 which indicates that once the hydrogen diffuses inside the lattice,it is easier to adsorb on the O atom to break W-O bond.And The diffusion process of a hydrogen molecule from the WO-terminated WO_(3)(001) surface to the inside of the WO_(3) lattice and hydrogen molecule adsorption inside the lattice was investigated.The activation energy of hydrogen molecule diffusion from the surface down to the first interstitial and diffusion from the first interstitial down to the second interstitial is 195.41 and 172.81 kJ·mol^(-1),respectively.The controlling step of hydrogen reduction of tungsten oxide may be the hydrogen molecule diffusion inside the oxides lattice through the interstitial.展开更多
基金The authors wish to express thanks to National Natural Science Foundation of China(Grant No.51774154)the Jiangxi Natural Science Foundation(Grant No.20151BAB206029)for the financial support for this research。
文摘A novel technology,modified roasting in CO-CO2 mixed gas and magnetic separation,was presented to recover iron from copper slag.The effects of various parameters such as dosage of flux(CaO),gas flowrate of CO and CO2,roasting temperature,roasting time,particle size of modified slag and magnetic flux density on the oxidized modification and magnetic separation were investigated by comparison of the X-ray diffraction patterns and iron recovery ratio.The optimum conditions for recovering iron by oxidizing roasting and magnetic separation are as follows:calcium oxide content of 25 wt.%,mixed gas flow rates of CO2 and CO of 180 and 20 mL/min,oxidizing roasting at 1323 K for 2 h,grinding the modified slag to 38.5-25.0μm and magnetic separation at 170 mT.The mineralogical and microstructural characteristics of modified slag revealed that the iron-bearing minerals in the copper slag were oxidized,the generated magnetite grew into large particles,and the silicate in copper slag was combined with calcium oxide to form calcium silicate.Finally,the iron-bearing concentrate with an iron grade of 54.79%and iron recovery ratio of 80.14%was effectively obtained.
文摘Hydrogen reduction of tungsten oxide is currently the most widely used technology to produce metal tungsten for its simplicity and pollution-free nature.The computer simulation is a powerful tool for exploring the mechanism of hydrogen reduction of tungsten oxide from a microscopic view.The density functional theory(DFT) is applied to investigate the adsorption characteristic of hydrogen molecule on the surface and inside the lattice of WO_(3).The adsorption energy of hydrogen on the WO_(3)(001) surface is 66.56 kJ.mol^(-1) which is larger than the adsorption energy of hydrogen molecule inside the lattice of WO3 which indicates that once the hydrogen diffuses inside the lattice,it is easier to adsorb on the O atom to break W-O bond.And The diffusion process of a hydrogen molecule from the WO-terminated WO_(3)(001) surface to the inside of the WO_(3) lattice and hydrogen molecule adsorption inside the lattice was investigated.The activation energy of hydrogen molecule diffusion from the surface down to the first interstitial and diffusion from the first interstitial down to the second interstitial is 195.41 and 172.81 kJ·mol^(-1),respectively.The controlling step of hydrogen reduction of tungsten oxide may be the hydrogen molecule diffusion inside the oxides lattice through the interstitial.