In this article, hybrid fillers with different dimensions, namely, 2-dimensional(2-D) expanded graphite(EG) and 1-dimensional(1-D) multi-walled carbon nanotubes(CNTs), were added to aromatic nylon MXD6 matrix ...In this article, hybrid fillers with different dimensions, namely, 2-dimensional(2-D) expanded graphite(EG) and 1-dimensional(1-D) multi-walled carbon nanotubes(CNTs), were added to aromatic nylon MXD6 matrix via melt-blending, to enhance its thermal and electrical conductivity as well as electromagnetic interference shielding effectiveness(EMI SE). For ternary composites of MXD6/EG/CNTs, the electrical conductivity reaches up nine orders of magnitude higher compared to that of the neat MXD6 sample, which turned the polymer-based composites from an insulator to a conductor, and the thermal conductivity has been enhanced by 477% compared with that of neat MXD6 sample. Meanwhile, the EMI SE of ternary composite reaches ~50 d B at the overall filler loading of only 18 wt%. This work can provide guidance for the preparation of polymer composites with excellent thermal and electrical conductivity via using hybrid filler.展开更多
Poly(bisphenol A carbonate) (BPA-PC) was post-polymerized by solid-state polymerization (SSP) after supercritical CO2-induced crystallization in low molecular weight particles prepolymerized via melt transesteri...Poly(bisphenol A carbonate) (BPA-PC) was post-polymerized by solid-state polymerization (SSP) after supercritical CO2-induced crystallization in low molecular weight particles prepolymerized via melt transesterification reaction. The effects of the crystallization conditions on melting behavior and SSP of BPA-PC were investigated with differential scanning calorimetry (DSC), Ubbelohde viscosity method and gel permeation chromatography (GPC). The reaction kinetics of the SSP of crystallized prepolymers was studied as a function of reaction temperatures for various reaction periods. As a result, the viscosity average molecular weight of BPA-PC particles (2 mm) increased from 1.9 × 10^4 g/mol to 2.8 × 10^4 g/mol after SSP. More importantly, the significantly enhanced thermal stability and mechanical properties of solid-state polymerized BPA-PC, compared with those of melt transesterification polymerized BPA-PC with the same molecular weight, can be ascribed to the substantial avoidance of undergoing high temperature during polymerization. Our work provides a useful method to obtain practical product of BPA-PC with high quality and high molecular weight.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.21274095 and 51573102)
文摘In this article, hybrid fillers with different dimensions, namely, 2-dimensional(2-D) expanded graphite(EG) and 1-dimensional(1-D) multi-walled carbon nanotubes(CNTs), were added to aromatic nylon MXD6 matrix via melt-blending, to enhance its thermal and electrical conductivity as well as electromagnetic interference shielding effectiveness(EMI SE). For ternary composites of MXD6/EG/CNTs, the electrical conductivity reaches up nine orders of magnitude higher compared to that of the neat MXD6 sample, which turned the polymer-based composites from an insulator to a conductor, and the thermal conductivity has been enhanced by 477% compared with that of neat MXD6 sample. Meanwhile, the EMI SE of ternary composite reaches ~50 d B at the overall filler loading of only 18 wt%. This work can provide guidance for the preparation of polymer composites with excellent thermal and electrical conductivity via using hybrid filler.
基金financially supported by the National Natural Science Foundation of China(No.51173112)
文摘Poly(bisphenol A carbonate) (BPA-PC) was post-polymerized by solid-state polymerization (SSP) after supercritical CO2-induced crystallization in low molecular weight particles prepolymerized via melt transesterification reaction. The effects of the crystallization conditions on melting behavior and SSP of BPA-PC were investigated with differential scanning calorimetry (DSC), Ubbelohde viscosity method and gel permeation chromatography (GPC). The reaction kinetics of the SSP of crystallized prepolymers was studied as a function of reaction temperatures for various reaction periods. As a result, the viscosity average molecular weight of BPA-PC particles (2 mm) increased from 1.9 × 10^4 g/mol to 2.8 × 10^4 g/mol after SSP. More importantly, the significantly enhanced thermal stability and mechanical properties of solid-state polymerized BPA-PC, compared with those of melt transesterification polymerized BPA-PC with the same molecular weight, can be ascribed to the substantial avoidance of undergoing high temperature during polymerization. Our work provides a useful method to obtain practical product of BPA-PC with high quality and high molecular weight.