AIM:To investigate the effect of acupuncture and moxibustion on epithelial cell apoptosis and expression of Bcl-2, Bax, fas and FasL proteins in rat ulcerative colitis.METHODS:A rat model of ulcerative colitis was est...AIM:To investigate the effect of acupuncture and moxibustion on epithelial cell apoptosis and expression of Bcl-2, Bax, fas and FasL proteins in rat ulcerative colitis.METHODS:A rat model of ulcerative colitis was estabelished by immunological methods and local stimulation. All rats were randomly divided into model control group (MC),electro-acupuncture group (EA), herbs-partition moxibustion group (HPM). Normal rats were used as normal control group (NC). Epithelial cell apoptosis and expression of Bcl-2, Bax, fas and FasL proteins were detected by TUNEL and immunohistochemiscal method respectively.RESULTS: The number of epithelial cell apoptosis in MC was significantly higher than that in NC,and was markedly decreased after the treatment with herbs-partition moxibustion or electro-acupuncture. The expression of Bcl-2, Bax, fas and FasL in colonic epithelial cells in MC was higher than that in NC, and was markedly down- regulated by herbs-partition moxibustion or electro-acupuncture treatment.CONCLUSION: The pathogenesis of ulcerative colitis in rats involves abnormality of apoptosis. Acupuncture and moxibustion can regulate the expression of Bcl-2, Bax, fas and FasL proteins and inhibit the apoptosis of epithelial cells of ulcerative colitis in rats by Bcl-2/Bax, fas/FasL pathways.展开更多
Objective: Melanoma antigen genes(MAGE) genes have been found in many kinds of tumor tissue, but not in normal tissue except testis and placentas. The Ags encoded by MAGE genes therefore are strictly tumor-specific. T...Objective: Melanoma antigen genes(MAGE) genes have been found in many kinds of tumor tissue, but not in normal tissue except testis and placentas. The Ags encoded by MAGE genes therefore are strictly tumor-specific. The most current researches associated with these genes focus on the tumor vaccination using these Ags. Few reports are concerning these genes' functions. In this study, we investigated the role of MAGE-A1 gene on NIH3T3 cells after transferring with it. Methods: Clone the MAGE-A1 into the plasmids pEGFP-C3 and pcDNA3.1, then transfer the reconstructed plasmids and primary plasmids into the NIH3T3 cells using a new transfer reagent FuGENE 6. Selecting the positively transferred cells by G418. Identified by RT-PCR, Western blot, Immunocytochemistry, Laser Scanning Confocal Microscope and Fluoroscope. The cells mobile ability was measured with Millicell-PCF. The cell cycle and apoptosis were measured with Flow Cytometry. Results:The apoptosis rate of NIH3T3 cells that transferred with control plasmid pcDNA3.1 was 13.4% and the ratios that stay in S phase and G2-M phase were 5.68% and 1.04% respectively. The apoptosis rate of NIH3T3 cells that transferred with pcDNA3.1-A1 was 0.90% and the ratios that stayed in S phase and G2-M phase were 19.31% and 13.47% respectively. The apoptosis rate of the cells that transferred with control plasmid pEGFP-C3 was 1.87%, a little higher than 1.47% of those transferred with pEGFP-C3-A1. Conclusion:The MAGE-A1 gene may enhance the cell cycle, inhibit the apoptosis and raise the mobile (ability) of NIH3T3 cells.展开更多
基金Supported by the National Natural Science Foundation of China,No.30200368 and Shanghai Commission of Science and Technology,No.02DZ19150-3 and key program of Shanghai and State Administration of Traditional Chinese Medicine of China
文摘AIM:To investigate the effect of acupuncture and moxibustion on epithelial cell apoptosis and expression of Bcl-2, Bax, fas and FasL proteins in rat ulcerative colitis.METHODS:A rat model of ulcerative colitis was estabelished by immunological methods and local stimulation. All rats were randomly divided into model control group (MC),electro-acupuncture group (EA), herbs-partition moxibustion group (HPM). Normal rats were used as normal control group (NC). Epithelial cell apoptosis and expression of Bcl-2, Bax, fas and FasL proteins were detected by TUNEL and immunohistochemiscal method respectively.RESULTS: The number of epithelial cell apoptosis in MC was significantly higher than that in NC,and was markedly decreased after the treatment with herbs-partition moxibustion or electro-acupuncture. The expression of Bcl-2, Bax, fas and FasL in colonic epithelial cells in MC was higher than that in NC, and was markedly down- regulated by herbs-partition moxibustion or electro-acupuncture treatment.CONCLUSION: The pathogenesis of ulcerative colitis in rats involves abnormality of apoptosis. Acupuncture and moxibustion can regulate the expression of Bcl-2, Bax, fas and FasL proteins and inhibit the apoptosis of epithelial cells of ulcerative colitis in rats by Bcl-2/Bax, fas/FasL pathways.
文摘Objective: Melanoma antigen genes(MAGE) genes have been found in many kinds of tumor tissue, but not in normal tissue except testis and placentas. The Ags encoded by MAGE genes therefore are strictly tumor-specific. The most current researches associated with these genes focus on the tumor vaccination using these Ags. Few reports are concerning these genes' functions. In this study, we investigated the role of MAGE-A1 gene on NIH3T3 cells after transferring with it. Methods: Clone the MAGE-A1 into the plasmids pEGFP-C3 and pcDNA3.1, then transfer the reconstructed plasmids and primary plasmids into the NIH3T3 cells using a new transfer reagent FuGENE 6. Selecting the positively transferred cells by G418. Identified by RT-PCR, Western blot, Immunocytochemistry, Laser Scanning Confocal Microscope and Fluoroscope. The cells mobile ability was measured with Millicell-PCF. The cell cycle and apoptosis were measured with Flow Cytometry. Results:The apoptosis rate of NIH3T3 cells that transferred with control plasmid pcDNA3.1 was 13.4% and the ratios that stay in S phase and G2-M phase were 5.68% and 1.04% respectively. The apoptosis rate of NIH3T3 cells that transferred with pcDNA3.1-A1 was 0.90% and the ratios that stayed in S phase and G2-M phase were 19.31% and 13.47% respectively. The apoptosis rate of the cells that transferred with control plasmid pEGFP-C3 was 1.87%, a little higher than 1.47% of those transferred with pEGFP-C3-A1. Conclusion:The MAGE-A1 gene may enhance the cell cycle, inhibit the apoptosis and raise the mobile (ability) of NIH3T3 cells.