Compared with the gas-solid phase reactions,the epoxidation of light olefins in the liquid phase could realize the highly selective preparation of epoxides at a lower temperature.Nevertheless,the C=C bond of light ole...Compared with the gas-solid phase reactions,the epoxidation of light olefins in the liquid phase could realize the highly selective preparation of epoxides at a lower temperature.Nevertheless,the C=C bond of light olefins is more difficult to activate,and it is still a challenge to realize the dual activation of the oxidant and light olefins in one reaction system.In this contribution,an oxametallacycle reinforced nanocomposite(Mo(O_(2))_(2)@RT)is prepared via an oxidative pretreatment strategy,and its epoxidation performance to 2-methylpropene in liquid-phase with tert-butyl hydroperoxide(TBHP)as an oxidant is evaluated.A set of advanced characterizations including field emission scanning electron microscopy,X-ray photoelectron spectroscopy,in-situ Fourier transform infrared spectroscopy(FT-IR),electron spin-resonance spectroscopy,and high-resolution mass spectrometer are implemented to confirm the physicochemical properties and the catalytic behaviors of Mo(O_(2))_(2)@RT.This catalyst has a fast kinetic response and exhibits excellent catalytic activity in 2-methylpropene epoxidation to produce 2-methylpropylene oxide(MPO;select.:99.7%;yield:92%),along with good reusability and scalability.Moreover,the main epoxidation mechanism is deduced that TBHP is activated by Mo(O_(2))_(2)@RT to generate the highly active tert-butyl peroxide radical,which realizes the epoxidation of 2-methylpropene to yield MPO.展开更多
基金This work was financially supported by the National Key Research and Development Program Nanotechnology Specific Project(No.2020YFA0210900)the National Natural Science Foundation of China(Nos.21908256,21938001,and 21878344)+1 种基金Guangdong Provincial Key R&D Program(No.2019B110206002)the Fundamental Research Funds for the Central Universities,Sun Yatsen University(No.2021qntd13).
文摘Compared with the gas-solid phase reactions,the epoxidation of light olefins in the liquid phase could realize the highly selective preparation of epoxides at a lower temperature.Nevertheless,the C=C bond of light olefins is more difficult to activate,and it is still a challenge to realize the dual activation of the oxidant and light olefins in one reaction system.In this contribution,an oxametallacycle reinforced nanocomposite(Mo(O_(2))_(2)@RT)is prepared via an oxidative pretreatment strategy,and its epoxidation performance to 2-methylpropene in liquid-phase with tert-butyl hydroperoxide(TBHP)as an oxidant is evaluated.A set of advanced characterizations including field emission scanning electron microscopy,X-ray photoelectron spectroscopy,in-situ Fourier transform infrared spectroscopy(FT-IR),electron spin-resonance spectroscopy,and high-resolution mass spectrometer are implemented to confirm the physicochemical properties and the catalytic behaviors of Mo(O_(2))_(2)@RT.This catalyst has a fast kinetic response and exhibits excellent catalytic activity in 2-methylpropene epoxidation to produce 2-methylpropylene oxide(MPO;select.:99.7%;yield:92%),along with good reusability and scalability.Moreover,the main epoxidation mechanism is deduced that TBHP is activated by Mo(O_(2))_(2)@RT to generate the highly active tert-butyl peroxide radical,which realizes the epoxidation of 2-methylpropene to yield MPO.