期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Evolution of Monkeypox C9L RNA G-Quadruplex Elevates the Translation of Its Only Kelch-like Protein by Accelerating G-Quadruplex Unfolding Kinetics
1
作者 yicong dai Xucong Teng +2 位作者 Difei Hu Qiushuang Zhang Jinghong Li 《CCS Chemistry》 2024年第4期953-963,共11页
Genomic surveillance of monkeypox virus(MPXV)is essential to explore the reason of its unusual outbreak.Current phylogenomic analysis of the MPXV genome mainly focuses on the effect of amino acid mutations.Herein,we e... Genomic surveillance of monkeypox virus(MPXV)is essential to explore the reason of its unusual outbreak.Current phylogenomic analysis of the MPXV genome mainly focuses on the effect of amino acid mutations.Herein,we explore the evolutionary variation of RNA G-quadruplex(RG4)of MPXV and find that the genome evolution of MPXV can also produce new effects through changes in the RG4 structure.This RG4 is located in MPXV’s only Kelch-like C9L gene,which encodes for an antagonist of the innate immune response.The evolution of this virus increases the unfolding kinetic constant of C9L RG4 and promotes the C9 protein level in living cells.Importantly,all reported MPXV genomes in 2022 carry the C9L-RG4-5 pattern with the highest unfolding kinetic constant.Additionally,the RG4 ligand,RGB-1,can impede the unfolding of C9L-RG4-5 and thereby reduce the C9 protein level.These findings carve out a new path to comprehensively understanding MPXV virology. 展开更多
关键词 G-quadruplex RNA secondary structure unfolding kinetics monkeypox virus genomic evolution immune evasion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部