期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
THE CONVERGENCE OF TRUNCATED EULER-MARUYAMA METHOD FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH PIECEWISE CONTINUOUS ARGUMENTS UNDER GENERALIZED ONE-SIDED LIPSCHITZ CONDITION
1
作者 yidan geng Minghui Song Mingzhu Liu 《Journal of Computational Mathematics》 SCIE CSCD 2023年第4期663-682,共20页
In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coef... In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coefficient satisfies the linear growth condition.Since the delay term t-[t]of SDEPCAs is not continuous and differentiable,the variable substitution method is not suitable.To overcome this dificulty,we adopt new techniques to prove the boundedness of the exact solution and the numerical solution.It is proved that the truncated Euler-Maruyama method is strongly convergent to SDEPCAs in the sense of L'(q≥2).We obtain the convergence order with some additional conditions.An example is presented to illustrate the analytical theory. 展开更多
关键词 Stochastic differential equations Piecewise continuous argument One-sided Lipschitz condition Truncated Euler-Maruyama method
原文传递
Convergence and Stability of the Truncated Euler-Maruyama Method for Stochastic Differential Equations with Piecewise Continuous Arguments 被引量:2
2
作者 yidan geng Minghui Song +1 位作者 Yulan Lu Mingzhu Liu 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2021年第1期194-218,共25页
In this paper,we develop the truncated Euler-Maruyama(EM)method for stochastic differential equations with piecewise continuous arguments(SDEPCAs),and consider the strong convergence theory under the local Lipschitz c... In this paper,we develop the truncated Euler-Maruyama(EM)method for stochastic differential equations with piecewise continuous arguments(SDEPCAs),and consider the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition.The order of convergence is obtained.Moreover,we show that the truncated EM method can preserve the exponential mean square stability of SDEPCAs.Numerical examples are provided to support our conclusions. 展开更多
关键词 Stochastic differential equations with piecewise continuous argument local Lips-chitz condition Khasminskii-type condition truncated Euler-Maruyama method convergence and stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部