期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Review of Sc microalloying effects in Al-Cu alloys
1
作者 Shenghua Wu Chong Yang +7 位作者 Peng Zhang Hang Xue yihan gao Yuqing Wang Ruihong Wang Jinyu Zhang Gang Liu Jun Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1098-1114,共17页
Artificially controlling the solid-state precipitation in aluminum (Al) alloys is an efficient way to achieve well-performed properties,and the microalloying strategy is the most frequently adopted method for such a p... Artificially controlling the solid-state precipitation in aluminum (Al) alloys is an efficient way to achieve well-performed properties,and the microalloying strategy is the most frequently adopted method for such a purpose.In this paper,recent advances in lengthscale-dependent scandium (Sc) microalloying effects in Al-Cu model alloys are reviewed.In coarse-grained Al-Cu alloys,the Sc-aided Cu/Sc/vacancies complexes that act as heterogeneous nuclei and Sc segregation at the θ′-Al_(2)Cu/matrix interface that reduces interfacial energy contribute significantly to θ′precipitation.By grain size refinement to the fine/ultrafine-grained scale,the strongly bonded Cu/Sc/vacancies complexes inhibit Cu and vacancy diffusing toward grain boundaries,promoting the desired intragranular θ′precipitation.At nanocrystalline scale,the applied high strain producing high-density vacancies results in the formation of a large quantity of (Cu Sc,vacancy)-rich atomic complexes with high thermal stability,outstandingly improving the strength/ductility synergy and preventing the intractable low-temperature precipitation.This review recommends the use of microalloying technology to modify the precipitation behaviors toward better combined mechanical properties and thermal stability in Al alloys. 展开更多
关键词 aluminum alloy microalloying effect length-scale dependence PRECIPITATION mechanical properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部