The combination of Ce6,an acknowledged photosensitizer,and TPL,a natural anticancer agent,has been demonstrated as a useful strategy to reinforce the tumor growth suppression,as well as decrease the systemic side effe...The combination of Ce6,an acknowledged photosensitizer,and TPL,a natural anticancer agent,has been demonstrated as a useful strategy to reinforce the tumor growth suppression,as well as decrease the systemic side effects compared with their monotherapy.However,in view of the optimal chemo-photodynamic combination efficiency,there is still short of the feasible nanovehicle to steadily co-deliver Ce6 and TPL,and stimuli-responsively burst release drugs in tumor site.Herein,we described the synergistic antitumor performance of a pH-sensitive supramolecular nanosystem,mediated by the host–guest complexing betweenβ-CD and acid pH-responsive amphiphilic co-polymer mPEG-PBAE-mPEG,showing the shell–core structural micelles with the tightβ-CD layer coating.Both Ce6 and TPLwere facilely co-loaded into the spherical supramolecular NPs(TPL+Ce6/NPs)by one-step nanoprecipitation method,with an ideal particle size(156.0 nm),acid pH-responsive drug release profile,and enhanced cellular internalization capacity.In view of the combination benefit of photodynamic therapy and chemotherapy,as well as co-encapsulation in the fabricated pH-sensitive supramolecular NPs,TPL+Ce6/NPs exhibited significant efficacy to suppress cellular proliferation,boost ROS level,lower MMP,and promote cellular apoptosis in vitro.Particularly,fluorescence imaging revealed that TPL+Ce6/NPs preferentially accumulated in the tumor tissue area,with higher intensity than that of free Ce6.As expected,upon 650-nm laser irradiation,TPL+Ce6/NPs exhibited a cascade of amplified synergistic chemo-photodynamic therapeutic benefits to suppress tumor progression in both hepatoma H22 tumor-bearingmice and B16 tumor-bearingmice.More importantly,lower systemic toxicitywas found in the tumor-bearingmice treated with TPL+Ce6/NPs.Overall,the designed supramolecular TPL+Ce6/NPs provided a promising alternative approach for chemo-photodynamic therapy in tumor treatment.展开更多
The grand challenges of climate change demand a new paradigm of urban design that takes the perfor- mance of urban systems into account, such as energy and water efficiency. Traditional urban design methods focus on t...The grand challenges of climate change demand a new paradigm of urban design that takes the perfor- mance of urban systems into account, such as energy and water efficiency. Traditional urban design methods focus on the form-making process and lack performance dimensions. Geodesign is an emerging approach that emphasizes the links between systems thinking, digital technology, and geographic con- text. This paper presents the research results of the first phase of a larger research collaboration and pro- poses an extended geodesign method for a district-scale urban design to integrate systems of renewable energy production, energy consumption, and storm water management, as well as a measurement of human experiences in cities. The method incorporates geographic information system (GIS), parametric modeling techniques, and multidisciplinary design optimization (MDO) tools that enable collaborative design decision-making. The method is tested and refined in a test case with the objective of designing a near-zero-energy urban district. Our final method has three characteristics. (1) Integrated geodesign and parametric design: It uses a parametric design approach to generate focal-scale district prototypes by means of a custom procedural algorithm, and applies geodesign to evaluate the performances of design proposals. (2) A focus on design flow: It elaborates how to define problems, what information is selected, and what criteria are used in making design decisions. (3) Multi-objective optimization: The test case produces indicators from performance modeling and derives principles through a multi-objective computational experiment to inform how the design can be improved. This paper concludes with issues and next steps in modeling urban design and infrastructure systems based on MDO tools.展开更多
Conventional photodynamic therapy(PDT)approaches face challenges including limited light penetration,low uptake of photosensitizers by tumors,and lack of oxygen in tumor microenvironments.One promising solution is to ...Conventional photodynamic therapy(PDT)approaches face challenges including limited light penetration,low uptake of photosensitizers by tumors,and lack of oxygen in tumor microenvironments.One promising solution is to internally generate light,photosensitizers,and oxygen.This can be accomplished through endogenous production,such as using bioluminescence as an endogenous light source,synthesizing genetically encodable photosensitizers in situ,and modifying cells genetically to express catalase enzymes.Furthermore,these strategies have been reinforced by the recent rapid advancements in synthetic biology.In this review,we summarize and discuss the approaches to overcome PDT obstacles by means of endogenous production of excitation light,photosensitizers,and oxygen.We envision that as synthetic biology advances,genetically engineered cells could act as precise and targeted“living factories”to produce PDT components,leading to enhanced performance of PDT.展开更多
目的观察C57BL/6小鼠牙齿正常的生长发育过程,为研究人类以及其他动物牙齿发育提供参考。方法采用C57BL/6小鼠54只,分别为出生后1 d(postnatal day 1,P1;P3、P7……含义依此类推)、P3、P7、P10、P14、P21、P28、P42、P56,每个鼠龄组6只...目的观察C57BL/6小鼠牙齿正常的生长发育过程,为研究人类以及其他动物牙齿发育提供参考。方法采用C57BL/6小鼠54只,分别为出生后1 d(postnatal day 1,P1;P3、P7……含义依此类推)、P3、P7、P10、P14、P21、P28、P42、P56,每个鼠龄组6只。全部小鼠处死后分离头颅及牙颌标本,显微CT扫描后进行三维重建。不同视角观察小鼠各牙位牙冠及牙根的生长发育状况。结果小鼠从出生到性成熟(P56)牙齿的生长发育可分为3个阶段。从出生到P14为第1阶段,此时所有磨牙(第一、二、三磨牙)牙冠已形成,而牙根均未发育完成;第2阶段从断乳(P21)到P28,此时所有磨牙的牙根均已达到正常长度并形成根尖孔;上下切牙通过磨耗形成锋利的釉质切刃,上下磨牙建立尖窝相对的咬合关系。第3阶段从P42到P56,根管出现分化,一些扁根内出现1-2型根管;根尖部发育完成并因牙骨质沉积而膨大。结论小鼠牙齿发育过程中,牙尖的矿化、牙冠的继续形成及牙根的延长均按特定时序、在特定空间位置、受到精确调控下进行;切牙与磨牙的发育模式显著不同。展开更多
Tungsten(W)accumulation in the core,depending on W generation and transport in the edge region,is a severe issue in fusion reactors.Compared to standard divertors(SDs),snowflake divertors(SFDs)can effectively suppress...Tungsten(W)accumulation in the core,depending on W generation and transport in the edge region,is a severe issue in fusion reactors.Compared to standard divertors(SDs),snowflake divertors(SFDs)can effectively suppress the heat flux,while the impact of magnetic configurations on W core accumulation remains unclear.In this study,the kinetic code DIVIMP combined with the SOLPS-ITER code is applied to investigate the effects of divertor magnetic configurations(SD versus SFD)on W accumulation during neon injection in HL-3.It is found that the W concentration in the core of the SFD is significantly higher than that of the SD with similar total W erosion flux.The reasons for this are:(1)W impurities in the core of the SFD mainly originate from the inner divertor,which has a short leg,and the source is close to the divertor entrance and upstream separatrix.Furthermore,the W ionization source(S_(W0))is much stronger,especially near the divertor entrance.(2)The region overlap of S_(W0)and F_(W,TOT)pointing upstream promote W accumulation in the core.Moreover,the influence of W source locations at the inner target on W transport in the SFD is investigated.Tungsten impurity in the core is mainly contributed by target erosion in the common flux region(CFR)away from the strike point.This is attributed to the fact that the W source at this location enhances the ionization source above the W ion stagnation point,which sequentially increases W penetration.Therefore,the suppression of far SOL inner target erosion can effectively prevent W impurities from accumulating in the core.展开更多
With the widespread application of radionuclide ^235U(VI), it is inevitable that part of U(VI) is released into the natural environment. The potential toxicity and irreversibility impact on the natural environment...With the widespread application of radionuclide ^235U(VI), it is inevitable that part of U(VI) is released into the natural environment. The potential toxicity and irreversibility impact on the natural environment has become one of the most forefront pollution problems in nuclear energy utilization. In this work, rod-like metal-organic framework (MOF-5) nanomaterial was synthesized by a solvothermal method and applied to efficiently adsorb U(VI) from aqueous solutions. The batch experimental results showed that the sorp- tion of U(Vl) on MOF-5 was strongly dependent on pH and independent of ionic strength, indicating that the dominant interaction mechanism was inner-sphere surface complexation and electrostatic interac- tion. The maximum sorption capacity of U(Vl) on MOF-5 was 237.0 mg]g at pH 5.0 and T = 298 K, and the sorption equilibrium reached within 5 rain. The thermodynamic parameters indicated that the removal of U(VI) on MOF-5 was a spontaneous and endothermic process. Additionally, the FT-IR and XPS analyses implied that the high sorption capacity of U(Vl) on MOF-5 was mainly attributed to the abundant oxygen-containing functional groups (i.e., C-O and C=O). Such a facile preparation method and efficient removal performance highlighted the application of MOF-5 as a candidate for rapid and efficient radionuclide contamination's elimination in practical applications.展开更多
Radionuclides with long half-life are toxic,and thereby result in serious threat to human beings and ecological balance.Herein,a simple two-step synthesis method was used to prepare manganese dioxide@polypyrrole(Mn O...Radionuclides with long half-life are toxic,and thereby result in serious threat to human beings and ecological balance.Herein,a simple two-step synthesis method was used to prepare manganese dioxide@polypyrrole(Mn O2@PPy)core/shell structures for efficient removal of U(Ⅵ)and Eu(Ⅲ)from aqueous solutions.The adsorption of U(Ⅵ)and Eu(Ⅲ)were investigated under different kinds of experimental conditions.The experimental results suggested that the adsorption of U(Ⅵ)and Eu(Ⅲ)on Mn O2@PPy were greatly affected by p H.U(Ⅵ)adsorption on Mn O2@PPy was independent of ionic strength at p H6.0.However,Eu(Ⅲ)adsorption on Mn O2@PPy was independent of ionic strength at the whole p H range of experimental conditions.The maximum adsorption capacities(q(max))of U(Ⅵ)and Eu(Ⅲ)were 63.04 and54.74 mg g(-1)at T=298 K,respectively.The BET,XRD,FTIR and XPS analysis evidenced that high adsorption capacities of U(Ⅵ)and Eu(Ⅲ)on Mn O2@PPy were mainly due to high surface area and rich metal oxygen-containing group(i.e.,Mn–OH and Mn–O),and the interaction was mainly attributed to strong surface complexation and electrostatic interaction.This study highlighted the excellent adsorption performance of U(Ⅵ)and Eu(Ⅲ)on Mn O2@PPy and could provide the reference for the elimination of radionuclides in real wastewater management.展开更多
基金supported by National Natural Science Foundation of China (No.81973662)Distinguished Young Scholar of Sichuan Provincial Science and Technology Department (No.2019JDJQ0049)111 Project (No.B18035)
文摘The combination of Ce6,an acknowledged photosensitizer,and TPL,a natural anticancer agent,has been demonstrated as a useful strategy to reinforce the tumor growth suppression,as well as decrease the systemic side effects compared with their monotherapy.However,in view of the optimal chemo-photodynamic combination efficiency,there is still short of the feasible nanovehicle to steadily co-deliver Ce6 and TPL,and stimuli-responsively burst release drugs in tumor site.Herein,we described the synergistic antitumor performance of a pH-sensitive supramolecular nanosystem,mediated by the host–guest complexing betweenβ-CD and acid pH-responsive amphiphilic co-polymer mPEG-PBAE-mPEG,showing the shell–core structural micelles with the tightβ-CD layer coating.Both Ce6 and TPLwere facilely co-loaded into the spherical supramolecular NPs(TPL+Ce6/NPs)by one-step nanoprecipitation method,with an ideal particle size(156.0 nm),acid pH-responsive drug release profile,and enhanced cellular internalization capacity.In view of the combination benefit of photodynamic therapy and chemotherapy,as well as co-encapsulation in the fabricated pH-sensitive supramolecular NPs,TPL+Ce6/NPs exhibited significant efficacy to suppress cellular proliferation,boost ROS level,lower MMP,and promote cellular apoptosis in vitro.Particularly,fluorescence imaging revealed that TPL+Ce6/NPs preferentially accumulated in the tumor tissue area,with higher intensity than that of free Ce6.As expected,upon 650-nm laser irradiation,TPL+Ce6/NPs exhibited a cascade of amplified synergistic chemo-photodynamic therapeutic benefits to suppress tumor progression in both hepatoma H22 tumor-bearingmice and B16 tumor-bearingmice.More importantly,lower systemic toxicitywas found in the tumor-bearingmice treated with TPL+Ce6/NPs.Overall,the designed supramolecular TPL+Ce6/NPs provided a promising alternative approach for chemo-photodynamic therapy in tumor treatment.
基金partially supported by the National Natural Science Foundation of China (71471138)
文摘The grand challenges of climate change demand a new paradigm of urban design that takes the perfor- mance of urban systems into account, such as energy and water efficiency. Traditional urban design methods focus on the form-making process and lack performance dimensions. Geodesign is an emerging approach that emphasizes the links between systems thinking, digital technology, and geographic con- text. This paper presents the research results of the first phase of a larger research collaboration and pro- poses an extended geodesign method for a district-scale urban design to integrate systems of renewable energy production, energy consumption, and storm water management, as well as a measurement of human experiences in cities. The method incorporates geographic information system (GIS), parametric modeling techniques, and multidisciplinary design optimization (MDO) tools that enable collaborative design decision-making. The method is tested and refined in a test case with the objective of designing a near-zero-energy urban district. Our final method has three characteristics. (1) Integrated geodesign and parametric design: It uses a parametric design approach to generate focal-scale district prototypes by means of a custom procedural algorithm, and applies geodesign to evaluate the performances of design proposals. (2) A focus on design flow: It elaborates how to define problems, what information is selected, and what criteria are used in making design decisions. (3) Multi-objective optimization: The test case produces indicators from performance modeling and derives principles through a multi-objective computational experiment to inform how the design can be improved. This paper concludes with issues and next steps in modeling urban design and infrastructure systems based on MDO tools.
基金supported by the National Natural Science Foundation of China(32000036)。
文摘Conventional photodynamic therapy(PDT)approaches face challenges including limited light penetration,low uptake of photosensitizers by tumors,and lack of oxygen in tumor microenvironments.One promising solution is to internally generate light,photosensitizers,and oxygen.This can be accomplished through endogenous production,such as using bioluminescence as an endogenous light source,synthesizing genetically encodable photosensitizers in situ,and modifying cells genetically to express catalase enzymes.Furthermore,these strategies have been reinforced by the recent rapid advancements in synthetic biology.In this review,we summarize and discuss the approaches to overcome PDT obstacles by means of endogenous production of excitation light,photosensitizers,and oxygen.We envision that as synthetic biology advances,genetically engineered cells could act as precise and targeted“living factories”to produce PDT components,leading to enhanced performance of PDT.
文摘目的观察C57BL/6小鼠牙齿正常的生长发育过程,为研究人类以及其他动物牙齿发育提供参考。方法采用C57BL/6小鼠54只,分别为出生后1 d(postnatal day 1,P1;P3、P7……含义依此类推)、P3、P7、P10、P14、P21、P28、P42、P56,每个鼠龄组6只。全部小鼠处死后分离头颅及牙颌标本,显微CT扫描后进行三维重建。不同视角观察小鼠各牙位牙冠及牙根的生长发育状况。结果小鼠从出生到性成熟(P56)牙齿的生长发育可分为3个阶段。从出生到P14为第1阶段,此时所有磨牙(第一、二、三磨牙)牙冠已形成,而牙根均未发育完成;第2阶段从断乳(P21)到P28,此时所有磨牙的牙根均已达到正常长度并形成根尖孔;上下切牙通过磨耗形成锋利的釉质切刃,上下磨牙建立尖窝相对的咬合关系。第3阶段从P42到P56,根管出现分化,一些扁根内出现1-2型根管;根尖部发育完成并因牙骨质沉积而膨大。结论小鼠牙齿发育过程中,牙尖的矿化、牙冠的继续形成及牙根的延长均按特定时序、在特定空间位置、受到精确调控下进行;切牙与磨牙的发育模式显著不同。
基金supported by the National Natural Science Foundation of China(11902243 and 51903124)the Young Elite Scientist Sponsorship Program by CAST(2019QNRC001)+2 种基金the“1000-Plan Program”of Shaanxi Provincethe“Young Talent Support Plan”of Xi’an Jiaotong UniversityInitiative Funds of Scientific Research for Metasequoia Talent(163105049)。
基金supported by National Natural Science Foundation of China(Nos.12235002 and 12122503)National Key R&D Program of China(No.2018YFE0301101)+1 种基金Dalian Science&Technology Talents Program(No.2022RJ11)Xingliao Talent Project(No.XLYC2203182)。
文摘Tungsten(W)accumulation in the core,depending on W generation and transport in the edge region,is a severe issue in fusion reactors.Compared to standard divertors(SDs),snowflake divertors(SFDs)can effectively suppress the heat flux,while the impact of magnetic configurations on W core accumulation remains unclear.In this study,the kinetic code DIVIMP combined with the SOLPS-ITER code is applied to investigate the effects of divertor magnetic configurations(SD versus SFD)on W accumulation during neon injection in HL-3.It is found that the W concentration in the core of the SFD is significantly higher than that of the SD with similar total W erosion flux.The reasons for this are:(1)W impurities in the core of the SFD mainly originate from the inner divertor,which has a short leg,and the source is close to the divertor entrance and upstream separatrix.Furthermore,the W ionization source(S_(W0))is much stronger,especially near the divertor entrance.(2)The region overlap of S_(W0)and F_(W,TOT)pointing upstream promote W accumulation in the core.Moreover,the influence of W source locations at the inner target on W transport in the SFD is investigated.Tungsten impurity in the core is mainly contributed by target erosion in the common flux region(CFR)away from the strike point.This is attributed to the fact that the W source at this location enhances the ionization source above the W ion stagnation point,which sequentially increases W penetration.Therefore,the suppression of far SOL inner target erosion can effectively prevent W impurities from accumulating in the core.
基金supported by the National Key Research and Development Program of China(2017YFA0207002)the National Natural Science Foundation of China(21577032,21607042)+1 种基金the Fundamental Research Funds for the Central Universities(2018ZD11,2018MS114,and 2016MS02)the Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection and the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘With the widespread application of radionuclide ^235U(VI), it is inevitable that part of U(VI) is released into the natural environment. The potential toxicity and irreversibility impact on the natural environment has become one of the most forefront pollution problems in nuclear energy utilization. In this work, rod-like metal-organic framework (MOF-5) nanomaterial was synthesized by a solvothermal method and applied to efficiently adsorb U(VI) from aqueous solutions. The batch experimental results showed that the sorp- tion of U(Vl) on MOF-5 was strongly dependent on pH and independent of ionic strength, indicating that the dominant interaction mechanism was inner-sphere surface complexation and electrostatic interac- tion. The maximum sorption capacity of U(Vl) on MOF-5 was 237.0 mg]g at pH 5.0 and T = 298 K, and the sorption equilibrium reached within 5 rain. The thermodynamic parameters indicated that the removal of U(VI) on MOF-5 was a spontaneous and endothermic process. Additionally, the FT-IR and XPS analyses implied that the high sorption capacity of U(Vl) on MOF-5 was mainly attributed to the abundant oxygen-containing functional groups (i.e., C-O and C=O). Such a facile preparation method and efficient removal performance highlighted the application of MOF-5 as a candidate for rapid and efficient radionuclide contamination's elimination in practical applications.
基金supported by the National Key Research and Development Program of China (2017YFA0207002)the National Natural Science Foundation of China (21577032)+1 种基金the Fundamental Research Funds for the Central Universities (2018ZD11, 2018MS114)the Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection and the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Radionuclides with long half-life are toxic,and thereby result in serious threat to human beings and ecological balance.Herein,a simple two-step synthesis method was used to prepare manganese dioxide@polypyrrole(Mn O2@PPy)core/shell structures for efficient removal of U(Ⅵ)and Eu(Ⅲ)from aqueous solutions.The adsorption of U(Ⅵ)and Eu(Ⅲ)were investigated under different kinds of experimental conditions.The experimental results suggested that the adsorption of U(Ⅵ)and Eu(Ⅲ)on Mn O2@PPy were greatly affected by p H.U(Ⅵ)adsorption on Mn O2@PPy was independent of ionic strength at p H6.0.However,Eu(Ⅲ)adsorption on Mn O2@PPy was independent of ionic strength at the whole p H range of experimental conditions.The maximum adsorption capacities(q(max))of U(Ⅵ)and Eu(Ⅲ)were 63.04 and54.74 mg g(-1)at T=298 K,respectively.The BET,XRD,FTIR and XPS analysis evidenced that high adsorption capacities of U(Ⅵ)and Eu(Ⅲ)on Mn O2@PPy were mainly due to high surface area and rich metal oxygen-containing group(i.e.,Mn–OH and Mn–O),and the interaction was mainly attributed to strong surface complexation and electrostatic interaction.This study highlighted the excellent adsorption performance of U(Ⅵ)and Eu(Ⅲ)on Mn O2@PPy and could provide the reference for the elimination of radionuclides in real wastewater management.