Background:Traumatic brain injury can be caused by head impacts,but many brain injury risk estimation models are not equally accurate across the variety of impacts that patients may undergo,and the characteristics of ...Background:Traumatic brain injury can be caused by head impacts,but many brain injury risk estimation models are not equally accurate across the variety of impacts that patients may undergo,and the characteristics of different types of impacts are not well studied.We investigated the spectral characteristics of different head impact types with kinematics classification.Methods:Data were analyzed from 3262 head impacts from lab reconstruction,American football,mixed martial arts,and publicly available car crash data.A random forest classifier with spectral densities of linear acceleration and angular velocity was built to classify head impact types(e.g.,football,car crash,mixed martial arts).To test the classifier robustness,another 271 lab-reconstructed impacts were obtained from 5 other instrumented mouthguards.Finally,with the classifier,type-specific,nearest-neighbor regression models were built for brain strain.Results:The classifier reached a median accuracy of 96% over 1000 random partitions of training and test sets.The most important features in the classification included both low-and high-frequency features,both linear acceleration features and angular velocity features.Different head impact types had different distributions of spectral densities in low-and high-frequency ranges(e.g.,the spectral densities of mixed martial arts impacts were higher in the high-frequency range than in the low-frequency range).The type-specific regression showed a generally higher R2value than baseline models without classification.Conclusion:The machine-learning-based classifier enables a better understanding of the impact kinematics spectral density in different sports,and it can be applied to evaluate the quality of impact-simulation systems and on-field data augmentation.展开更多
Bilayer structure with functional overlayer has been commonly adopted to resolve the issue of moisture poisoning in chemiresistors.However,the conventional overlayers always suffer from blocking access of gas molecule...Bilayer structure with functional overlayer has been commonly adopted to resolve the issue of moisture poisoning in chemiresistors.However,the conventional overlayers always suffer from blocking access of gas molecules to sensing layer due to lacking porosity and deteriorated adsorption capability.Herein,taking advantages of the well-defined porous structure and hydrophobic nature of pure silica zeolite,we assembled an overlayer of Pd-PdO clusters-encapsulated mesoporous silicalite-1(MFI)zeolite(named M-S-1)on ZnO sensing layer,to prevent moisture poisoning,and enhance gas diffusion and adsorption capabilities.The inherent capability of MFI zeolite to incorporate monodispersed nanometric(ca.3 nm)Pd-PdO cluster in its void space is of great importance for the NO_(2) adsorption.The Pd-PdO@M-S-1 overlayer can attain negligible moisture interference to the ZnO layer without significantly altering the gas selectivity and baseline resistance,and enhance gas response.Consequently,the Pd-PdO@M-S-1/ZnO bilayer sensor can ultra-selectively(S_(nitrogen dioxide)/S_(interference gas)>4),and ultra-stably detect trace level of NO_(2)(9.5 ppb)at low temperature(370 K)under high levels of humidity(90%RH).This work exemplifies a next-generation solution to design bilayer sensors using zeolite overlayer for eliminating the humidity dependence of the gas-sensing properties.展开更多
As an emerging processing technology,transfer printing enables the assembly of functional material arrays(called inks)on various substrates with micro/nanoscale resolution and has been widely used in the fabrication o...As an emerging processing technology,transfer printing enables the assembly of functional material arrays(called inks)on various substrates with micro/nanoscale resolution and has been widely used in the fabrication of flexible electronics and display systems.The critical steps in transfer printing are the ink pick-up and printing processes governed by the switching of adhesion states at the stamp/ink interface.In this review,we first introduce the history of transfer printing in terms of the transfer methods,transferred materials,and applications.Then,the fundamental characteristics of the transfer printing system and typical strategies for regulating the stamp/ink interfacial adhesion strength are summarized and exemplified.Finally,future challenges and opportunities for developing the novel stamps,inks,and substrates with intelligent adhesion capability are discussed,aiming to inspire the innovation in the design of transfer printing systems.展开更多
The successful return of lunar soil samples from the northern Oceanus Procellarum by the Chang’E 5(CE-5) mission has provided unprecedented ground-truth information for the previously unexplored region of the Moon. I...The successful return of lunar soil samples from the northern Oceanus Procellarum by the Chang’E 5(CE-5) mission has provided unprecedented ground-truth information for the previously unexplored region of the Moon. In particular, the particle size and mineral constituents of the CE-5 soil samples are of critical importance to interpret remote sensing data. With a Raman-based particle analysis system, we show that the particle size properties and mineral constituents of the CE-5 soil can be simultaneously determined with a small sample size(ca. 30 μg). The CE-5 sample scooped from the lunar surface has an overall small size between 0.4 μm and 73.9 μm(mean=3.5 μm), and mainly consists of pyroxene(39.4%), plagioclase(37.5%), olivine(9.8%), Fe-Ti oxides(1.9%), glass(8.3%) and other minor or trace phases. The results are consistent with previous analyses with larger sample sizes. In addition to minimum sample consumption, this method requires very little sample preparation, and can rapidly build a large database with each particle precisely traceable. Therefore, this novel technique is particularly suitable for the analysis of future returned soil samples from extraterrestrial bodies.展开更多
基金supported by the Pac-12 Conference’s Student-Athlete Health and Well-Being Initiative,the National Institutes of Health (R24NS098518)Stanford Department of Bioengineering。
文摘Background:Traumatic brain injury can be caused by head impacts,but many brain injury risk estimation models are not equally accurate across the variety of impacts that patients may undergo,and the characteristics of different types of impacts are not well studied.We investigated the spectral characteristics of different head impact types with kinematics classification.Methods:Data were analyzed from 3262 head impacts from lab reconstruction,American football,mixed martial arts,and publicly available car crash data.A random forest classifier with spectral densities of linear acceleration and angular velocity was built to classify head impact types(e.g.,football,car crash,mixed martial arts).To test the classifier robustness,another 271 lab-reconstructed impacts were obtained from 5 other instrumented mouthguards.Finally,with the classifier,type-specific,nearest-neighbor regression models were built for brain strain.Results:The classifier reached a median accuracy of 96% over 1000 random partitions of training and test sets.The most important features in the classification included both low-and high-frequency features,both linear acceleration features and angular velocity features.Different head impact types had different distributions of spectral densities in low-and high-frequency ranges(e.g.,the spectral densities of mixed martial arts impacts were higher in the high-frequency range than in the low-frequency range).The type-specific regression showed a generally higher R2value than baseline models without classification.Conclusion:The machine-learning-based classifier enables a better understanding of the impact kinematics spectral density in different sports,and it can be applied to evaluate the quality of impact-simulation systems and on-field data augmentation.
基金the financial support by the National Natural Science Foundation of China(Nos.22288101,22375070,and 62303192)the 111 Project of China(No.B17020)Jilin Province Science and Technology Development Plan Project(No.20230508178RC).
文摘Bilayer structure with functional overlayer has been commonly adopted to resolve the issue of moisture poisoning in chemiresistors.However,the conventional overlayers always suffer from blocking access of gas molecules to sensing layer due to lacking porosity and deteriorated adsorption capability.Herein,taking advantages of the well-defined porous structure and hydrophobic nature of pure silica zeolite,we assembled an overlayer of Pd-PdO clusters-encapsulated mesoporous silicalite-1(MFI)zeolite(named M-S-1)on ZnO sensing layer,to prevent moisture poisoning,and enhance gas diffusion and adsorption capabilities.The inherent capability of MFI zeolite to incorporate monodispersed nanometric(ca.3 nm)Pd-PdO cluster in its void space is of great importance for the NO_(2) adsorption.The Pd-PdO@M-S-1 overlayer can attain negligible moisture interference to the ZnO layer without significantly altering the gas selectivity and baseline resistance,and enhance gas response.Consequently,the Pd-PdO@M-S-1/ZnO bilayer sensor can ultra-selectively(S_(nitrogen dioxide)/S_(interference gas)>4),and ultra-stably detect trace level of NO_(2)(9.5 ppb)at low temperature(370 K)under high levels of humidity(90%RH).This work exemplifies a next-generation solution to design bilayer sensors using zeolite overlayer for eliminating the humidity dependence of the gas-sensing properties.
基金National Natural Science Foundation of China,Grant/Award Number:22035008International Partnership Program of Chinese Academy of Sciences,Grant/Award Number:1A1111KYSB20200010。
文摘As an emerging processing technology,transfer printing enables the assembly of functional material arrays(called inks)on various substrates with micro/nanoscale resolution and has been widely used in the fabrication of flexible electronics and display systems.The critical steps in transfer printing are the ink pick-up and printing processes governed by the switching of adhesion states at the stamp/ink interface.In this review,we first introduce the history of transfer printing in terms of the transfer methods,transferred materials,and applications.Then,the fundamental characteristics of the transfer printing system and typical strategies for regulating the stamp/ink interfacial adhesion strength are summarized and exemplified.Finally,future challenges and opportunities for developing the novel stamps,inks,and substrates with intelligent adhesion capability are discussed,aiming to inspire the innovation in the design of transfer printing systems.
基金supported by the National Natural Science Foundation of China(42241156)the Pre-research Project on Civil Aerospace Technologies funded by China National Space Adiministration(D020205)the Outstanding Youth Team Project of China University of Geosciences,Wuhan(G1323523042)to Zaicong Wang。
基金supported by the Pre-Research Project on Civil Aerospace Technologies funded by CNSA (Grant No. D020205)the National Natural Science Foundation of China (Grant No. 42172337)the Program of the State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Grant No. GBL12101)。
文摘The successful return of lunar soil samples from the northern Oceanus Procellarum by the Chang’E 5(CE-5) mission has provided unprecedented ground-truth information for the previously unexplored region of the Moon. In particular, the particle size and mineral constituents of the CE-5 soil samples are of critical importance to interpret remote sensing data. With a Raman-based particle analysis system, we show that the particle size properties and mineral constituents of the CE-5 soil can be simultaneously determined with a small sample size(ca. 30 μg). The CE-5 sample scooped from the lunar surface has an overall small size between 0.4 μm and 73.9 μm(mean=3.5 μm), and mainly consists of pyroxene(39.4%), plagioclase(37.5%), olivine(9.8%), Fe-Ti oxides(1.9%), glass(8.3%) and other minor or trace phases. The results are consistent with previous analyses with larger sample sizes. In addition to minimum sample consumption, this method requires very little sample preparation, and can rapidly build a large database with each particle precisely traceable. Therefore, this novel technique is particularly suitable for the analysis of future returned soil samples from extraterrestrial bodies.