期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Unveiling localized electronic properties of ReS2 thin layers at nanoscale using Kelvin force probe microscopy combined with tip-enhanced Raman spectroscopy
1
作者 罗宇 苏伟涛 +4 位作者 张娟娟 陈飞 武可 曾宜杰 卢红伟 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期598-603,共6页
Electronic properties of two-dimensional(2D) materials can be strongly modulated by localized strain. The typical spatial resolution of conventional Kelvin probe force microscopy(KPFM) is usually limited in a few hund... Electronic properties of two-dimensional(2D) materials can be strongly modulated by localized strain. The typical spatial resolution of conventional Kelvin probe force microscopy(KPFM) is usually limited in a few hundreds of nanometers, and it is difficult to characterize localized electronic properties of 2D materials at nanoscales. Herein, tip-enhanced Raman spectroscopy(TERS) is proposed to combine with KPFM to break this restriction. TERS scan is conducted on ReS2bubbles deposited on a rough Au thin film to obtain strain distribution by using the Raman peak shift. The localized contact potential difference(CPD) is inversely calculated with a higher spatial resolution by using strain measured by TERS and CPD-strain working curve obtained using conventional KPFM and atomic force microscopy. This method enhances the spatial resolution of CPD measurements and can be potentially used to characterize localized electronic properties of 2D materials. 展开更多
关键词 few layer ReS2 tip enhanced Raman spectroscopy local strain Kelvin probe force microscopy
下载PDF
Superconductivity in CuIr_(2-x)Al_(x)Te_(4) telluride chalcogenides
2
作者 Dong Yan Lingyong zeng +6 位作者 yijie zeng Yishi Lin Junjie Yin Meng Wang Yihua Wang Daoxin Yao Huixia Luo 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期538-544,共7页
The relationship between charge-density-wave(CDW) and superconductivity(SC), two vital physical phases in condensed matter physics, has always been the focus of scientists’ research over the past decades. Motivated b... The relationship between charge-density-wave(CDW) and superconductivity(SC), two vital physical phases in condensed matter physics, has always been the focus of scientists’ research over the past decades. Motivated by this research hotspot, we systematically studied the physical properties of the layered telluride chalcogenide superconductors CuIr_(2-x)Al_(x)Te_(4)(0 ≤x≤ 0.2). Through the resistance and magnetization measurements, we found that the CDW order was destroyed by a small amount of Al doping. Meanwhile, the superconducting transition temperature(T_(c)) kept changing with the change of doping amount and rose towards the maximum value of 2.75 K when x = 0.075. The value of normalized specific heat jump(△C/γT_(c)) for the highest T_(c) sample CuIr_(2-x)Al_(x)Te_(4)was 1.53, which was larger than the BCS value of 1.43 and showed the bulk superconducting nature. In order to clearly show the relationship between SC and CDW states,we propose a phase diagram of T_(c) vs. doping content. 展开更多
关键词 layered telluride chalcogenide SUPERCONDUCTIVITY CHARGE-DENSITY-WAVE CuIr_(2-x)Al_(x)Te_(4)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部