Electrocatalytic ammonia synthesis under mild conditions is an attractive and challenging process in the earth’s nitrogen cycle,which requires efficient and stable catalysts to reduce the overpotential.The N2 activat...Electrocatalytic ammonia synthesis under mild conditions is an attractive and challenging process in the earth’s nitrogen cycle,which requires efficient and stable catalysts to reduce the overpotential.The N2 activation and reduction overpotential of different Ti3C2O2-supported transition metal(TM)(Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Mo,Ru,Rh,Pd,Ag,Cd,and Au)single-atom catalysts have been analyzed in terms of the Gibbs free energies calculated using the density functional theory(DFT).The end-on N2 adsorption was more energetically favorable,and the negative free energies represented good N2 activation performance,especially in the presence Fe/Ti3C2O2(﹣0.75 eV).The overpotentials of Fe/Ti3C2O2,Co/Ti3C2O2,Ru/Ti3C2O2,and Rh/Ti3C2O2 were 0.92,0.89,1.16,and 0.84 eV,respectively.The potential required for ammonia synthesis was different for different TMs and ranged from 0.68 to 2.33 eV.Two possible potential-limiting steps may be involved in the process:(i)hydrogenation of N2 to*NNH and(ii)hydrogenation of*NH2 to ammonia.These catalysts can change the reaction pathway and avoid the traditional N–N bond-breaking barrier.It also simplifies the understanding of the relationship between the Gibbs free energy and overpotential,which is a significant factor in the rational designing and large-scale screening of catalysts for the electrocatalytic ammonia synthesis.展开更多
The nitrogen reduction reaction(NRR)using new and efficient electrocatalysts is a promising al‐ternative to the traditional Haber‐Bosch process.Nevertheless,it remains a challenge to design efficient catalysts with ...The nitrogen reduction reaction(NRR)using new and efficient electrocatalysts is a promising al‐ternative to the traditional Haber‐Bosch process.Nevertheless,it remains a challenge to design efficient catalysts with improved catalytic performance.Herein,various O‐functional MXenes were investigated as NRR catalysts by a combination of density functional theory calculations and least absolute shrinkage and selection operator(LASSO)regression.Nb_(3)C_(2)O_(X) has been regarded as a promising catalyst for the NRR because of its stability,activity,and selectivity.The poten‐tial‐determining step is*NH_(2) hydrogenation to*NH3 with a limiting potential of-0.45 V.Further‐more,via LASSO regression,the descriptors and equations fitting the relationship between the properties of O‐functional MXenes and NRR activity have been proposed.This work not only pro‐vides a rational design strategy for catalysts but also provides machine learning data for further investigation.展开更多
The development of bifunctional catalysts for the efficient hydrogenation and acceptorless dehydrogenation of N‐heterocycles is a challenge.In this study,Ru_(2)P/AC effectively promoted reversible transformations bet...The development of bifunctional catalysts for the efficient hydrogenation and acceptorless dehydrogenation of N‐heterocycles is a challenge.In this study,Ru_(2)P/AC effectively promoted reversible transformations between unsaturated and saturated N‐heterocycles affording yields of 98%and 99%,respectively.Moreover,a remarkable enhancement in the reusability of Ru_(2)P/AC was observed compared with other Ru‐based catalysts.According to density functional theory calculations,the superior performance of Ru_(2)P/AC was ascribed to specific synergistic factors,namely geometric and electronic effects induced by P.P greatly reduced the large Ru‐Ru ensembles and finely modified the electronic structures,leading to a low reaction barrier and high desorption ability of the catalyst,further boosting the hydrogenation and acceptorless dehydrogenation processes.展开更多
基金financially supported by the National Natural Science Foundation of China(21625604,21776251,21671172,21706229,21878272)~~
文摘Electrocatalytic ammonia synthesis under mild conditions is an attractive and challenging process in the earth’s nitrogen cycle,which requires efficient and stable catalysts to reduce the overpotential.The N2 activation and reduction overpotential of different Ti3C2O2-supported transition metal(TM)(Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Mo,Ru,Rh,Pd,Ag,Cd,and Au)single-atom catalysts have been analyzed in terms of the Gibbs free energies calculated using the density functional theory(DFT).The end-on N2 adsorption was more energetically favorable,and the negative free energies represented good N2 activation performance,especially in the presence Fe/Ti3C2O2(﹣0.75 eV).The overpotentials of Fe/Ti3C2O2,Co/Ti3C2O2,Ru/Ti3C2O2,and Rh/Ti3C2O2 were 0.92,0.89,1.16,and 0.84 eV,respectively.The potential required for ammonia synthesis was different for different TMs and ranged from 0.68 to 2.33 eV.Two possible potential-limiting steps may be involved in the process:(i)hydrogenation of N2 to*NNH and(ii)hydrogenation of*NH2 to ammonia.These catalysts can change the reaction pathway and avoid the traditional N–N bond-breaking barrier.It also simplifies the understanding of the relationship between the Gibbs free energy and overpotential,which is a significant factor in the rational designing and large-scale screening of catalysts for the electrocatalytic ammonia synthesis.
文摘The nitrogen reduction reaction(NRR)using new and efficient electrocatalysts is a promising al‐ternative to the traditional Haber‐Bosch process.Nevertheless,it remains a challenge to design efficient catalysts with improved catalytic performance.Herein,various O‐functional MXenes were investigated as NRR catalysts by a combination of density functional theory calculations and least absolute shrinkage and selection operator(LASSO)regression.Nb_(3)C_(2)O_(X) has been regarded as a promising catalyst for the NRR because of its stability,activity,and selectivity.The poten‐tial‐determining step is*NH_(2) hydrogenation to*NH3 with a limiting potential of-0.45 V.Further‐more,via LASSO regression,the descriptors and equations fitting the relationship between the properties of O‐functional MXenes and NRR activity have been proposed.This work not only pro‐vides a rational design strategy for catalysts but also provides machine learning data for further investigation.
文摘The development of bifunctional catalysts for the efficient hydrogenation and acceptorless dehydrogenation of N‐heterocycles is a challenge.In this study,Ru_(2)P/AC effectively promoted reversible transformations between unsaturated and saturated N‐heterocycles affording yields of 98%and 99%,respectively.Moreover,a remarkable enhancement in the reusability of Ru_(2)P/AC was observed compared with other Ru‐based catalysts.According to density functional theory calculations,the superior performance of Ru_(2)P/AC was ascribed to specific synergistic factors,namely geometric and electronic effects induced by P.P greatly reduced the large Ru‐Ru ensembles and finely modified the electronic structures,leading to a low reaction barrier and high desorption ability of the catalyst,further boosting the hydrogenation and acceptorless dehydrogenation processes.