A series of CeO_(2)-TiO_(2)mixed oxides supports with various Ce/Ti molar ratio were synthesized by modified coprecipitation method. The corresponding Pt loaded(0.5 wt% Pt) catalysts were prepared by electronless depo...A series of CeO_(2)-TiO_(2)mixed oxides supports with various Ce/Ti molar ratio were synthesized by modified coprecipitation method. The corresponding Pt loaded(0.5 wt% Pt) catalysts were prepared by electronless deposition method and evaluated for the deep oxidation of n-hexane as a model VOCs. The results show that the CeO_(2)and TiOxnanoparticles can highly disperse into each other and form Ce_(2)Ti_(2)O_(7)solid solution with appropriate Ce/Ti molar ratio, which significantly improves their redox ability by enhancing the interaction between CeO_(2)and TiO_(x). The dispersibility of Pt species can also be adjusted by altering the Ce/Ti molar ratio, and Pt/CeTi-2/1 catalyst with Ce/Ti molar ratio of 2:1 exhibits the best Pt dispersibility that Pt species mainly exist as Pt single atoms. The high dispersion of Pt species in the Pt/CeO_(2)-TiO_(2)catalysts would promote the catalytic activity of VOCs oxidation with low T90% values(1000 ppm, GHSV = 15,000 h^(-1)), such as for n-hexane degradation with T90% of 139℃. The characterizations reveal that the superior activity is mainly related to possessing the more Pt2+species,adsorbed oxygen species and higher low-temperature reducibility owing to the strong interaction between highly dispersed Pt species and CeO_(2)-TiO_(2)as well as the promoted migration of lattice oxygen by the formation of more Ce_(2)Ti_(2)O_(7)species. Furthermore, the Pt/CeTi-2/1 catalyst also exhibits excellent stability for chlorinated and other non-chlorinated VOCs oxidation, making it very promising for real application under various operating conditions.展开更多
Monolayer molybdenum disulfide(MoS2) is a novel two-dimensional material that exhibits potential application in lubrication technology. In this work, molecular dynamics was used to investigate the lubrication behaviou...Monolayer molybdenum disulfide(MoS2) is a novel two-dimensional material that exhibits potential application in lubrication technology. In this work, molecular dynamics was used to investigate the lubrication behaviour of different polar fluid molecules(i.e., water, methanol and decane) confined in monolayer Mo S2 nanoslits. The pore width effect(i.e., 1.2, 1.6 and 2.0 nm) was also evaluated. Results revealed that decane molecules exhibited good lubricating performance compared to the other two kinds of molecules. The friction coefficient followed the order of decane b methanol b water, and decreased evidently as the slit width increased, except for decane. Analysis of the spatial distribution and mobility of different confined fluid molecules showed that a solid-like layer was formed near the slit wall. This phenomenon led to the extra low friction coefficient of confined decane molecules.展开更多
Triboelectric nanogenerators(TENGs)have potential to achieve energy harvesting and condition monitoring of oils,the“lifeblood”of industry.However,oil absorption on the solid surfaces is a great challenge for oil-sol...Triboelectric nanogenerators(TENGs)have potential to achieve energy harvesting and condition monitoring of oils,the“lifeblood”of industry.However,oil absorption on the solid surfaces is a great challenge for oil-solid TENG(O-TENG).Here,oleophobic/superamphiphobic O-TENGs are achieved via engineering of solid surface wetting properties.The designed O-TENG can generate an excellent electricity(with a charge density of 9.1μC m^(−2) and a power density of 1.23 mW m^(−2)),which is an order of magnitude higher than other O-TENGs made from polytetrafluoroethylene and polyimide.It also has a significant durability(30,000 cycles)and can power a digital thermometer for self-powered sensor applications.Further,a superhigh-sensitivity O-TENG monitoring system is successfully developed for real-time detecting particle/water contaminants in oils.The O-TENG can detect particle contaminants at least down to 0.01 wt%and water contaminants down to 100 ppm,which are much better than previous online monitoring methods(particle>0.1 wt%;water>1000 ppm).More interesting,the developed O-TENG can also distinguish water from other contaminants,which means the developed O-TENG has a highly water-selective performance.This work provides an ideal strategy for enhancing the output and durability of TENGs for oil-solid contact and opens new intelligent pathways for oil-solid energy harvesting and oil condition monitoring.展开更多
Different zeolites supported Pt catalystswithmicro-mesoporous structurewere prepared by organic base tetrapropylammonium hydroxide(TPAOH)treatment and their catalytic oxidation activity for various volatile organic co...Different zeolites supported Pt catalystswithmicro-mesoporous structurewere prepared by organic base tetrapropylammonium hydroxide(TPAOH)treatment and their catalytic oxidation activity for various volatile organic compounds(VOCs)were evaluated.The results reveal that the synergistic effect between Pt nanoparticles and surface acid sites plays an important role in VOCs low-temperature removal.The small size and high dispersion of Pt nanoparticles on the surface of the zeolites would promote the catalytic oxidation of aromatics and alkanes over the Pt/zeolite catalysts,while strong acidity and abundant acid sites of catalysts are in favour of the oxidation of the VOCs containingNandOheteroatoms.In addition,it was found that Pt/ZSM-5 catalyst exhibits the highest oxidation activity for various VOCs low-temperature removal amongst all the catalysts due to the balance of both Pt dispersion and abundant acid sites in the catalyst.This comprehensive consideration should be very helpful when designing and preparing novel catalysts for the low-temperature removal of VOCs.展开更多
Tourist preferences are important for the high-quality planning and design of recreation spaces.The famous scenic locale of West Lake in Hangzhou,China,is used as an example in this study.Based on multi-source data(e....Tourist preferences are important for the high-quality planning and design of recreation spaces.The famous scenic locale of West Lake in Hangzhou,China,is used as an example in this study.Based on multi-source data(e.g.,online comments,and tourist photographs),we used content analysis,kernel density estimation,and image semantic segmentation technology to determine the spatial distribution of tourists’landscape preferences.We analyzed these spatial sight characteristics from the viewpoint,sight distance,and perspectives.The results show that tourists’landscape preferences are mainly concentrated on landscape architecture for recreation.The viewpoints of these preferences are concentrated in the north-south embankmentdfar beyond that of the east-west embankment.The preferences also show a spatial sequence in terms of sight distance,and the best visual effect is the open platform at the north and south islands of Xiaoyingzhou.From the perspective of vision,the degree of spatial openness in the tourists’landscape preferences is proportional to the distance of vision;the two factors have a convergent relationship.The discussion of the characteristics of tourists’landscape preference and space sight creation in Xiaoyingzhou provides a reference for the quality improvement of island recreation space.展开更多
Series of Cu-USY zeolite catalyst with different Cu loading content were synthesized through simple impregnation method.The obtained catalysts were subjected to selective catalytic reduction of NOxwith NH_(3)(NH_(3)-S...Series of Cu-USY zeolite catalyst with different Cu loading content were synthesized through simple impregnation method.The obtained catalysts were subjected to selective catalytic reduction of NOxwith NH_(3)(NH_(3)-SCR) performance evaluation,structural/chemical characterizations such as X-ray diffraction (XRD),N2adsorption/desorption,H_(2)temperature-programmed reduction (H_(2)-TPR),NH_(3)temperature-programmed desorption (NH_(3)-TPD) as well as detailed in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments including CO adsorption,NH_(3)adsorption and NO+O_(2)in situ reactions.Results show that Cu-USY with proper Cu loading (in this work 5Cu-USY with5 wt.%Cu) could be promising candidates with highly efficient NH_(3)-SCR catalytic performance,relatively low byproduct formation and excellent hydrothermal stability,although its SO_(2)poisoning tolerability needs alleviation.Further characterizations reveal that such catalytic advantages can be attributed to both active cu species and surface acid centers evolution modulated by Cu loading.On one hand,Cu species in the super cages of zeolites increases with higher Cu content and being more conducive for NH_(3)-SCR reactivity.On the other hand,higher Cu loading leads to depletion of Br?nsted acid centers and simultaneous formation of abundant Lewis acid centers,which facilitates NH_(4)NO_(3)reduction via NH_(3)adsorbed on Lewis acid centers,thus improving SCR reactivity.However,Cu over-introduction leads to formation of surface highly dispersed CuOx,causing unfavorable NH_(3)oxidation and inferior N2selectivity.展开更多
Using nanoadditives in lubricants is one of the most effective ways to control friction and wear,which is of great significance for energy conservation,emission reduction,and environmental protection.With the scientif...Using nanoadditives in lubricants is one of the most effective ways to control friction and wear,which is of great significance for energy conservation,emission reduction,and environmental protection.With the scientific and technological development,great advances have been made in nanolubricant additives in the scientific research and industrial applications.This review summarizes the categories of nanolubricant additives and illustrates the tribological properties of these additives.Based on the component elements of nanomaterials,nanolubricant additives can be divided into three types:nanometal-based,nanocarbon-based,and nanocomposite-based additives.The dispersion stabilities of additives in lubricants are also discussed in the review systematically.Various affecting factors and effective dispersion methods have been investigated in detail.Moreover,the review summarizes the lubrication mechanisms of nanolubricant additives including tribofilm formation,micro-bearing effect,self-repair performance,and synergistic effect.In addition,the challenges and prospects of nanolubricant additives are proposed,which guides the design and synthesis of novel additives with significant lubrication and antiwear properties in the future.展开更多
Micro-mesoporous ZSM-5 zeolites were obtained by the post-treatment of tetrahydroxy ammonium hydroxide(TPAOH) solution with different concentration.The hierarchical pore structure formed during the desilication proces...Micro-mesoporous ZSM-5 zeolites were obtained by the post-treatment of tetrahydroxy ammonium hydroxide(TPAOH) solution with different concentration.The hierarchical pore structure formed during the desilication process facilitates the dispersion of Pt nanoparticles and Pt/ZSM-5 catalysts exhibit rather high catalytic activity for the deep oxidation of various VOCs at low temperature.The catalyst treated with TPAOH of 0.1 mol/L(Pt/ZSM-5(0.1)) shows the lowest degradation temperature(T90%) of 128 and 142℃, respectively for benzene and n-hexane.Compared with the untreated Pt/ZSM-5 catalyst, the abundant mesopores, small Pt particle size and finely dispersed Pt contribute to the superior catalytic activity and stability of the Pt/ZSM-5 catalysts for VOCs removal.More importantly, the existence of H_(2)O in the feed gases hardly affected the activity of Pt/ZSM-5(0.1) catalyst at the low reaction temperature of 128℃, which is very important for VOCs low-temperature removal in the future practical applications.展开更多
A series of new halogen-free dicationic ionic liquids(ILs)with different alkyl chain lengths were prepared,and the relationship between the alkyl chain length,physicochemical and tribological properties of ILs,and the...A series of new halogen-free dicationic ionic liquids(ILs)with different alkyl chain lengths were prepared,and the relationship between the alkyl chain length,physicochemical and tribological properties of ILs,and their role as neat lubricant for steel–steel friction pairs,was investigated.Evaluation of stability during hydrolysis and copper strip corrosion test results show that synthetic ILs are stable and not corrosive to metal contacts,due to the halogen-free anions.The friction and wear test results indicate that ILs with long alkyl chains have excellent friction-reducing and anti-wear properties,especially at high temperatures.Based on the surface three-dimensional(3D)profiles,electrical contact resistance,scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),and the X-ray photoelectron spectrometry(XPS)analysis of the worn surfaces of steel discs,we can conclude that the efficiency of ILs is due to the formation of high quality tribofilms that consist of both tribochemical reaction and ordered absorption films.展开更多
A series of transition metals(Fe,Co,Ni,Cu,Cr and Mn)-doped CeO_(2)-TiO_(2) catalysts were prepared by the sol-gel method and applied for the catalytic removal of 1,2-dichloroethane(DCE) as a model for chlorinated VOCs...A series of transition metals(Fe,Co,Ni,Cu,Cr and Mn)-doped CeO_(2)-TiO_(2) catalysts were prepared by the sol-gel method and applied for the catalytic removal of 1,2-dichloroethane(DCE) as a model for chlorinated VOCs(CVOCs).The various characterization methods including X-ray diffraction(XRD),N_(2) adsorption-desorption,UV-Raman,NH_(3) temperature-programmed desorption(NH_(3)-TPD) and H_(2) temperature-programmed reduction(H_(2)-TPR) were utilized to investigate the physicochemical properties of the catalysts.The results show that doping Fe,Co,Ni or Mn can obviously promote the activity of CeO_(2)-TiO_(2) mixed oxides for DCE degradation,which is related to their improved texture properties,acid sites(especially for strong acidity) and low-temperature reducibility.Particularly,CeTi-Fe doped with moderate Fe exhibits excellent activity for 1,2-dichloroethane(DCE) degradation,giving a T_(90%) value as low as 250℃.More importantly,only trace chlorinated byproducts were produced during the low-temperature degradation of various CVOCs(dichloromethane(DCM),trichloroethylene(TCE) and chlorobenzene(CB)) over CeTi-Fe1/9 catalyst with high durability.展开更多
基金supported by a grant from the National Key Research and Development Program of China (2016YFC0204300)the National Nature Science Foundation of China (21477109)。
文摘A series of CeO_(2)-TiO_(2)mixed oxides supports with various Ce/Ti molar ratio were synthesized by modified coprecipitation method. The corresponding Pt loaded(0.5 wt% Pt) catalysts were prepared by electronless deposition method and evaluated for the deep oxidation of n-hexane as a model VOCs. The results show that the CeO_(2)and TiOxnanoparticles can highly disperse into each other and form Ce_(2)Ti_(2)O_(7)solid solution with appropriate Ce/Ti molar ratio, which significantly improves their redox ability by enhancing the interaction between CeO_(2)and TiO_(x). The dispersibility of Pt species can also be adjusted by altering the Ce/Ti molar ratio, and Pt/CeTi-2/1 catalyst with Ce/Ti molar ratio of 2:1 exhibits the best Pt dispersibility that Pt species mainly exist as Pt single atoms. The high dispersion of Pt species in the Pt/CeO_(2)-TiO_(2)catalysts would promote the catalytic activity of VOCs oxidation with low T90% values(1000 ppm, GHSV = 15,000 h^(-1)), such as for n-hexane degradation with T90% of 139℃. The characterizations reveal that the superior activity is mainly related to possessing the more Pt2+species,adsorbed oxygen species and higher low-temperature reducibility owing to the strong interaction between highly dispersed Pt species and CeO_(2)-TiO_(2)as well as the promoted migration of lattice oxygen by the formation of more Ce_(2)Ti_(2)O_(7)species. Furthermore, the Pt/CeTi-2/1 catalyst also exhibits excellent stability for chlorinated and other non-chlorinated VOCs oxidation, making it very promising for real application under various operating conditions.
基金Supported by the National NaturalScience Foundation of China(21576130,21490584)Project of Jiangsu Natural Science Foundation of China(BK20171464)+1 种基金Qing Lan ProjectJiangsu Overseas Visiting Scholar Program for University Prominent Young&Middleaged Teachers and Presidents
文摘Monolayer molybdenum disulfide(MoS2) is a novel two-dimensional material that exhibits potential application in lubrication technology. In this work, molecular dynamics was used to investigate the lubrication behaviour of different polar fluid molecules(i.e., water, methanol and decane) confined in monolayer Mo S2 nanoslits. The pore width effect(i.e., 1.2, 1.6 and 2.0 nm) was also evaluated. Results revealed that decane molecules exhibited good lubricating performance compared to the other two kinds of molecules. The friction coefficient followed the order of decane b methanol b water, and decreased evidently as the slit width increased, except for decane. Analysis of the spatial distribution and mobility of different confined fluid molecules showed that a solid-like layer was formed near the slit wall. This phenomenon led to the extra low friction coefficient of confined decane molecules.
基金want to thank Swedish Kempe Scholarship Project(No.JCK-1903.1)the Swedish Research Council for Environment,Agricultural Sciences and Spatial Planning(Formas,No.2019-00904)+1 种基金the Swedish Research Council(No.2019-04941)and the National Natural Science Foundation of China(Grant No.51905027).
文摘Triboelectric nanogenerators(TENGs)have potential to achieve energy harvesting and condition monitoring of oils,the“lifeblood”of industry.However,oil absorption on the solid surfaces is a great challenge for oil-solid TENG(O-TENG).Here,oleophobic/superamphiphobic O-TENGs are achieved via engineering of solid surface wetting properties.The designed O-TENG can generate an excellent electricity(with a charge density of 9.1μC m^(−2) and a power density of 1.23 mW m^(−2)),which is an order of magnitude higher than other O-TENGs made from polytetrafluoroethylene and polyimide.It also has a significant durability(30,000 cycles)and can power a digital thermometer for self-powered sensor applications.Further,a superhigh-sensitivity O-TENG monitoring system is successfully developed for real-time detecting particle/water contaminants in oils.The O-TENG can detect particle contaminants at least down to 0.01 wt%and water contaminants down to 100 ppm,which are much better than previous online monitoring methods(particle>0.1 wt%;water>1000 ppm).More interesting,the developed O-TENG can also distinguish water from other contaminants,which means the developed O-TENG has a highly water-selective performance.This work provides an ideal strategy for enhancing the output and durability of TENGs for oil-solid contact and opens new intelligent pathways for oil-solid energy harvesting and oil condition monitoring.
基金supported by a grant from the National Key Research and Development Program of China (No. 2016YFC0204300)the Nature Science Foundation of China (No. 21477109)
文摘Different zeolites supported Pt catalystswithmicro-mesoporous structurewere prepared by organic base tetrapropylammonium hydroxide(TPAOH)treatment and their catalytic oxidation activity for various volatile organic compounds(VOCs)were evaluated.The results reveal that the synergistic effect between Pt nanoparticles and surface acid sites plays an important role in VOCs low-temperature removal.The small size and high dispersion of Pt nanoparticles on the surface of the zeolites would promote the catalytic oxidation of aromatics and alkanes over the Pt/zeolite catalysts,while strong acidity and abundant acid sites of catalysts are in favour of the oxidation of the VOCs containingNandOheteroatoms.In addition,it was found that Pt/ZSM-5 catalyst exhibits the highest oxidation activity for various VOCs low-temperature removal amongst all the catalysts due to the balance of both Pt dispersion and abundant acid sites in the catalyst.This comprehensive consideration should be very helpful when designing and preparing novel catalysts for the low-temperature removal of VOCs.
基金This research is supported by Zhejiang Provincial Fund Key Project(Grant No.LZ23D010003)the Provincial Key Project of Emerging(cross)Disciplines(Grant No.22JCXK06Z).
文摘Tourist preferences are important for the high-quality planning and design of recreation spaces.The famous scenic locale of West Lake in Hangzhou,China,is used as an example in this study.Based on multi-source data(e.g.,online comments,and tourist photographs),we used content analysis,kernel density estimation,and image semantic segmentation technology to determine the spatial distribution of tourists’landscape preferences.We analyzed these spatial sight characteristics from the viewpoint,sight distance,and perspectives.The results show that tourists’landscape preferences are mainly concentrated on landscape architecture for recreation.The viewpoints of these preferences are concentrated in the north-south embankmentdfar beyond that of the east-west embankment.The preferences also show a spatial sequence in terms of sight distance,and the best visual effect is the open platform at the north and south islands of Xiaoyingzhou.From the perspective of vision,the degree of spatial openness in the tourists’landscape preferences is proportional to the distance of vision;the two factors have a convergent relationship.The discussion of the characteristics of tourists’landscape preference and space sight creation in Xiaoyingzhou provides a reference for the quality improvement of island recreation space.
基金supported by the Key Program of Science Technology Department of Zhejiang Province (No.2018C03037)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No.20KJB610005)+2 种基金the Natural Science Foundation of Jiangsu Province (Nos.BK20201037,BK20190705)Key Research and Development Program of Anhui Province (No.202104g01020006)the Scientific Research Fund of Nanjing Institute of Technology (Nos.YKJ2019111 and YKJ2019110)。
文摘Series of Cu-USY zeolite catalyst with different Cu loading content were synthesized through simple impregnation method.The obtained catalysts were subjected to selective catalytic reduction of NOxwith NH_(3)(NH_(3)-SCR) performance evaluation,structural/chemical characterizations such as X-ray diffraction (XRD),N2adsorption/desorption,H_(2)temperature-programmed reduction (H_(2)-TPR),NH_(3)temperature-programmed desorption (NH_(3)-TPD) as well as detailed in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments including CO adsorption,NH_(3)adsorption and NO+O_(2)in situ reactions.Results show that Cu-USY with proper Cu loading (in this work 5Cu-USY with5 wt.%Cu) could be promising candidates with highly efficient NH_(3)-SCR catalytic performance,relatively low byproduct formation and excellent hydrothermal stability,although its SO_(2)poisoning tolerability needs alleviation.Further characterizations reveal that such catalytic advantages can be attributed to both active cu species and surface acid centers evolution modulated by Cu loading.On one hand,Cu species in the super cages of zeolites increases with higher Cu content and being more conducive for NH_(3)-SCR reactivity.On the other hand,higher Cu loading leads to depletion of Br?nsted acid centers and simultaneous formation of abundant Lewis acid centers,which facilitates NH_(4)NO_(3)reduction via NH_(3)adsorbed on Lewis acid centers,thus improving SCR reactivity.However,Cu over-introduction leads to formation of surface highly dispersed CuOx,causing unfavorable NH_(3)oxidation and inferior N2selectivity.
基金This work is supported by the National Natural Science Foundation of China(51905027)National Key R&D Program of China(2018YFB2000801)+3 种基金Fundamental Research Funds for the Central Universities(BUCTRC201908)Tribology Science Fund of State Key Laboratory of Tribology(SKLTKF18A02)Swedish Research Council for Environment,Agricultural Sciences and Spatial Planning(2016-01098)Swedish Research Council(2019-04941)。
文摘Using nanoadditives in lubricants is one of the most effective ways to control friction and wear,which is of great significance for energy conservation,emission reduction,and environmental protection.With the scientific and technological development,great advances have been made in nanolubricant additives in the scientific research and industrial applications.This review summarizes the categories of nanolubricant additives and illustrates the tribological properties of these additives.Based on the component elements of nanomaterials,nanolubricant additives can be divided into three types:nanometal-based,nanocarbon-based,and nanocomposite-based additives.The dispersion stabilities of additives in lubricants are also discussed in the review systematically.Various affecting factors and effective dispersion methods have been investigated in detail.Moreover,the review summarizes the lubrication mechanisms of nanolubricant additives including tribofilm formation,micro-bearing effect,self-repair performance,and synergistic effect.In addition,the challenges and prospects of nanolubricant additives are proposed,which guides the design and synthesis of novel additives with significant lubrication and antiwear properties in the future.
基金supported by a grant from the National Key Research and Development Program of China (No.2016YFC0204300)the Nature Science Foundation of China (No.21477109)。
文摘Micro-mesoporous ZSM-5 zeolites were obtained by the post-treatment of tetrahydroxy ammonium hydroxide(TPAOH) solution with different concentration.The hierarchical pore structure formed during the desilication process facilitates the dispersion of Pt nanoparticles and Pt/ZSM-5 catalysts exhibit rather high catalytic activity for the deep oxidation of various VOCs at low temperature.The catalyst treated with TPAOH of 0.1 mol/L(Pt/ZSM-5(0.1)) shows the lowest degradation temperature(T90%) of 128 and 142℃, respectively for benzene and n-hexane.Compared with the untreated Pt/ZSM-5 catalyst, the abundant mesopores, small Pt particle size and finely dispersed Pt contribute to the superior catalytic activity and stability of the Pt/ZSM-5 catalysts for VOCs removal.More importantly, the existence of H_(2)O in the feed gases hardly affected the activity of Pt/ZSM-5(0.1) catalyst at the low reaction temperature of 128℃, which is very important for VOCs low-temperature removal in the future practical applications.
基金The authors acknowledge financial support from the National Key Research and Development Program of China(2018YFB0703802)the National Natural Science Foundation of China(Grant Nos.51705504,21972153,and 51675512)+3 种基金the China Postdoctoral Science Foundation Funded Project(2019M653798)the Youth Innovation Promotion Association of CAS(2018454)the pre-research project in the manned space field(040101)the Gansu Province Science and Technology Plan(18ZD2WA011).
文摘A series of new halogen-free dicationic ionic liquids(ILs)with different alkyl chain lengths were prepared,and the relationship between the alkyl chain length,physicochemical and tribological properties of ILs,and their role as neat lubricant for steel–steel friction pairs,was investigated.Evaluation of stability during hydrolysis and copper strip corrosion test results show that synthetic ILs are stable and not corrosive to metal contacts,due to the halogen-free anions.The friction and wear test results indicate that ILs with long alkyl chains have excellent friction-reducing and anti-wear properties,especially at high temperatures.Based on the surface three-dimensional(3D)profiles,electrical contact resistance,scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),and the X-ray photoelectron spectrometry(XPS)analysis of the worn surfaces of steel discs,we can conclude that the efficiency of ILs is due to the formation of high quality tribofilms that consist of both tribochemical reaction and ordered absorption films.
基金Project supported by the National Key Research and Development Program of China(2016YFC0204300)the National Natural Science Foundation of China(21477109)。
文摘A series of transition metals(Fe,Co,Ni,Cu,Cr and Mn)-doped CeO_(2)-TiO_(2) catalysts were prepared by the sol-gel method and applied for the catalytic removal of 1,2-dichloroethane(DCE) as a model for chlorinated VOCs(CVOCs).The various characterization methods including X-ray diffraction(XRD),N_(2) adsorption-desorption,UV-Raman,NH_(3) temperature-programmed desorption(NH_(3)-TPD) and H_(2) temperature-programmed reduction(H_(2)-TPR) were utilized to investigate the physicochemical properties of the catalysts.The results show that doping Fe,Co,Ni or Mn can obviously promote the activity of CeO_(2)-TiO_(2) mixed oxides for DCE degradation,which is related to their improved texture properties,acid sites(especially for strong acidity) and low-temperature reducibility.Particularly,CeTi-Fe doped with moderate Fe exhibits excellent activity for 1,2-dichloroethane(DCE) degradation,giving a T_(90%) value as low as 250℃.More importantly,only trace chlorinated byproducts were produced during the low-temperature degradation of various CVOCs(dichloromethane(DCM),trichloroethylene(TCE) and chlorobenzene(CB)) over CeTi-Fe1/9 catalyst with high durability.