The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ...The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise).展开更多
Anther development is a programmed biological process crucial to plant male reproduction. Genomewide analyses on the functions of transcriptional factor(TF) genes and their microRNA(miRNA) regulators contributing to a...Anther development is a programmed biological process crucial to plant male reproduction. Genomewide analyses on the functions of transcriptional factor(TF) genes and their microRNA(miRNA) regulators contributing to anther development have not been comprehensively performed in maize. Here, using published RNA-Seq and small RNA-Seq(sRNA-Seq) data from maize anthers at ten developmental stages in three genic male-sterility(GMS) mutants(ocl4, mac1, and ms23) and wild type W23, as well as newly sequenced maize anther transcriptomes of ms7-6007 and lob30 GMS mutants and their WT lines, we analyzed and found 1079 stage-differentially expressed(stage-DE) TF genes that can be grouped into six(premeiotic, meiotic, postmeiotic, premeiotic-meiotic, premeiotic-postmeiotic, and meiotic-postmeiotic clusters) expression clusters. Functional enrichment combined with cytological and physiological analyses revealed specific functions of genes in each expression cluster. In addition, 118 stage-DE miRNAs and99 miRNA-TF gene pairs were identified in maize anthers. Further analyses revealed the regulatory roles of zma-miR319 and zma-miR159 as well as ZmMs7 and ZmLOB30 on ZmGAMYB expression. Moreover,ZmGAMYB and its paralog ZmGAMYB-2 were demonstrated as novel maize GMS genes by CRISPR/Cas9 knockout analysis. These results extend our understanding on the functions of miRNA-TF gene regulatory pairs and GMS TF genes contributing to male fertility in plants.展开更多
Freshwater resources and energy are the two material foundations of human survival and the two challenges for human sustainable development. China's huge population needs a large amount of freshwater for basic nec...Freshwater resources and energy are the two material foundations of human survival and the two challenges for human sustainable development. China's huge population needs a large amount of freshwater for basic necessities. Desalination is an intelligent and promising technology for increasing water resources to realize a sustainable supply of freshwater. However, high levels of energy consumption and greenhouse gas emissions have restricted the development of desalination. Solar energy has the unique advantage that it can be harnessed in different forms. This paper discusses the water resources and solar energy utilization status in China and presents a comprehensive review on a possible solution: coupling desalination technologies with sustainable energy. China's desalination market is reviewed, and the energy consumption for several desalination processes is summarized to present a brief outlook of desalination techniques in China. Potential coupled methods for solar-powered desalination are compared. This study will facilitate understanding of the latent water crisis in China and help China's desalination market transition from conventional energy sources to choose an appropriate solar-powered desalination process.展开更多
Isobaric specific heat capacity(Cp)is an important parameter not only in physics but also for most materials.Its accurate measurement is particularly critical for performance evaluation of thermoelectric materials,but...Isobaric specific heat capacity(Cp)is an important parameter not only in physics but also for most materials.Its accurate measurement is particularly critical for performance evaluation of thermoelectric materials,but the experiments by differential scanning calorimetry(DSC)often lead to large uncertainties in the measurements,especially at elevated temperatures.In this study,we propose a simple method to determine Cp by measuring the sound velocity(υ)based on lattice vibration and expansion theory.The relative standard error of theυis smaller than 1%,showing good accuracy and repeatability.The calculated Cp at elevated temperature(>300 K)increases slightly with increasing temperature due to the lattice expansion,which is more reasonable than the Dulong–Petit value.展开更多
Highly luminescent zero-dimensional(0D)metal halide clusters attract widespread attention owing to strong exciton confinement and populated self-trapped states but often exhibit narrow emission and are susceptible to ...Highly luminescent zero-dimensional(0D)metal halide clusters attract widespread attention owing to strong exciton confinement and populated self-trapped states but often exhibit narrow emission and are susceptible to hydrolysis.Herein,we demonstrate a moisture-resistant metal–organic framework(MOF)consisting of cationic 0D[Pb_(4)Cl_(5)]^(3+)nodes bridged by adamantanetetracarboxylate.Upon near-UV excitation,the material emits intrinsic broadband bluish white-light emission with high external quantum efficiency of 35%and a color rendering index of 76.Unlike organoammonium cations in lead perovskites,the Pb-carboxylate coordination affords the MOF to be chemically stable and photostable in high humidity.The photoemitter exhibits undiminished photoemissions under ambient conditions[∼60%relative humidity(RH)]upon continuous UV irradiation(143 mW/cm^(2),365 nm)for 7 days.The insertion of[Na_(4)Cl]^(3+)moieties will connect 0D units into two-dimensional(2D)metal halide layers to limit structural strain and decrease the quantum efficiency from 35%to 15%,confirming the key importance of 0D units for efficient emission.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20210347)。
文摘The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise).
基金funded by the National Natural Science Foundation of China (31771875, 31971958, and 31871702)the Fundamental Research Funds for the Central Universities of China (2302019FRF-TP-19-013A1, 06500136)the National Key Research and Development Program of China (2017YFD0102001, 2018YFD0100806, and 2017YFD0101201)。
文摘Anther development is a programmed biological process crucial to plant male reproduction. Genomewide analyses on the functions of transcriptional factor(TF) genes and their microRNA(miRNA) regulators contributing to anther development have not been comprehensively performed in maize. Here, using published RNA-Seq and small RNA-Seq(sRNA-Seq) data from maize anthers at ten developmental stages in three genic male-sterility(GMS) mutants(ocl4, mac1, and ms23) and wild type W23, as well as newly sequenced maize anther transcriptomes of ms7-6007 and lob30 GMS mutants and their WT lines, we analyzed and found 1079 stage-differentially expressed(stage-DE) TF genes that can be grouped into six(premeiotic, meiotic, postmeiotic, premeiotic-meiotic, premeiotic-postmeiotic, and meiotic-postmeiotic clusters) expression clusters. Functional enrichment combined with cytological and physiological analyses revealed specific functions of genes in each expression cluster. In addition, 118 stage-DE miRNAs and99 miRNA-TF gene pairs were identified in maize anthers. Further analyses revealed the regulatory roles of zma-miR319 and zma-miR159 as well as ZmMs7 and ZmLOB30 on ZmGAMYB expression. Moreover,ZmGAMYB and its paralog ZmGAMYB-2 were demonstrated as novel maize GMS genes by CRISPR/Cas9 knockout analysis. These results extend our understanding on the functions of miRNA-TF gene regulatory pairs and GMS TF genes contributing to male fertility in plants.
基金supported by the state Grid Science and Technology Project(No.52450018000F,Title:Synergistic Development Theory and Key Technology Research of Seawater Deslination and Clean Energy)
文摘Freshwater resources and energy are the two material foundations of human survival and the two challenges for human sustainable development. China's huge population needs a large amount of freshwater for basic necessities. Desalination is an intelligent and promising technology for increasing water resources to realize a sustainable supply of freshwater. However, high levels of energy consumption and greenhouse gas emissions have restricted the development of desalination. Solar energy has the unique advantage that it can be harnessed in different forms. This paper discusses the water resources and solar energy utilization status in China and presents a comprehensive review on a possible solution: coupling desalination technologies with sustainable energy. China's desalination market is reviewed, and the energy consumption for several desalination processes is summarized to present a brief outlook of desalination techniques in China. Potential coupled methods for solar-powered desalination are compared. This study will facilitate understanding of the latent water crisis in China and help China's desalination market transition from conventional energy sources to choose an appropriate solar-powered desalination process.
基金Basic Science Center Project of NSFC,Grant/Award Number:51788104National Key R&D Program of China,Grant/Award Number:2018YFB0703603。
文摘Isobaric specific heat capacity(Cp)is an important parameter not only in physics but also for most materials.Its accurate measurement is particularly critical for performance evaluation of thermoelectric materials,but the experiments by differential scanning calorimetry(DSC)often lead to large uncertainties in the measurements,especially at elevated temperatures.In this study,we propose a simple method to determine Cp by measuring the sound velocity(υ)based on lattice vibration and expansion theory.The relative standard error of theυis smaller than 1%,showing good accuracy and repeatability.The calculated Cp at elevated temperature(>300 K)increases slightly with increasing temperature due to the lattice expansion,which is more reasonable than the Dulong–Petit value.
基金supported by grants from the National Natural Science Foundation of China(nos.21971197 and 51772217)the Shanghai Rising-Star Program(no.20QA1409500)the Recruitment of Global Youth Experts by China,the Fundamental Research Funds for the Central Universities,and the Science&Technology Commission of Shanghai Municipality(no.19DZ2271500).
文摘Highly luminescent zero-dimensional(0D)metal halide clusters attract widespread attention owing to strong exciton confinement and populated self-trapped states but often exhibit narrow emission and are susceptible to hydrolysis.Herein,we demonstrate a moisture-resistant metal–organic framework(MOF)consisting of cationic 0D[Pb_(4)Cl_(5)]^(3+)nodes bridged by adamantanetetracarboxylate.Upon near-UV excitation,the material emits intrinsic broadband bluish white-light emission with high external quantum efficiency of 35%and a color rendering index of 76.Unlike organoammonium cations in lead perovskites,the Pb-carboxylate coordination affords the MOF to be chemically stable and photostable in high humidity.The photoemitter exhibits undiminished photoemissions under ambient conditions[∼60%relative humidity(RH)]upon continuous UV irradiation(143 mW/cm^(2),365 nm)for 7 days.The insertion of[Na_(4)Cl]^(3+)moieties will connect 0D units into two-dimensional(2D)metal halide layers to limit structural strain and decrease the quantum efficiency from 35%to 15%,confirming the key importance of 0D units for efficient emission.