Neutron production driven by intense lasers utilizing inverse kinematic reactions is explored self-consistently by a combination of particle-in-cell simulations for laser-driven ion acceleration and Monte Carlo nuclea...Neutron production driven by intense lasers utilizing inverse kinematic reactions is explored self-consistently by a combination of particle-in-cell simulations for laser-driven ion acceleration and Monte Carlo nuclear reaction simulations for neutron production.It is proposed that laser-driven light-sail acceleration from ultrathin lithium foils can provide an energetic lithium-ion beam as the projectile bombarding a light hydrocarbon target with sufficiently high flux for the inverse p(^(7)Li,n)reaction to be efficiently achieved.Three-dimensional self-consistent simulations show that a forward-directed pulsed neutron source with ultrashort pulse duration 3 ns,small divergence angle 260,and extremely high peak flux 3×10~14n/(cm^(2)·s)can be produced by petawatt lasers at intensities of 10^(21)W/cm^(2).These results indicate that a laser-driven neutron source based on inverse kinematics has promise as a novel compact pulsed neutron generator for practical applications,since the it can operate in a safe and repetitive way with almost no undesirable radiation.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA1603200 and 2022YFA1603201)the National Natural Science Foundation of China(Grant Nos.12135001,11825502,and 11921006)+1 种基金the Strategic Priority Research Program of CAS(Grant No.XDA25050900)the National Natural Science Funds for Distinguished Young Scholars(Grant No.11825502)。
文摘Neutron production driven by intense lasers utilizing inverse kinematic reactions is explored self-consistently by a combination of particle-in-cell simulations for laser-driven ion acceleration and Monte Carlo nuclear reaction simulations for neutron production.It is proposed that laser-driven light-sail acceleration from ultrathin lithium foils can provide an energetic lithium-ion beam as the projectile bombarding a light hydrocarbon target with sufficiently high flux for the inverse p(^(7)Li,n)reaction to be efficiently achieved.Three-dimensional self-consistent simulations show that a forward-directed pulsed neutron source with ultrashort pulse duration 3 ns,small divergence angle 260,and extremely high peak flux 3×10~14n/(cm^(2)·s)can be produced by petawatt lasers at intensities of 10^(21)W/cm^(2).These results indicate that a laser-driven neutron source based on inverse kinematics has promise as a novel compact pulsed neutron generator for practical applications,since the it can operate in a safe and repetitive way with almost no undesirable radiation.
基金supported by the National Natural Science Foundation of China(41901061,32100356)the High-level Talents Funds of Qingdao Agricultural University,China(663-1119008,663-1118015).
基金financially supported by the Funds for Creative Research Groups of China(51921001)the 111 Project(BP0719004)+1 种基金the Program for Changjiang Scholars,Innovative Research Team in University of China(IRT_14R05)the National Natural Science Foundation of China(11790293 and 51871016)。