Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is stil...Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis.展开更多
Trace environmental pollutants have become a serious problem with special attention on the hazardous heavy metals, refractory organics, and pathogenic microorganisms. With coupling biosorption and photocatalysis to de...Trace environmental pollutants have become a serious problem with special attention on the hazardous heavy metals, refractory organics, and pathogenic microorganisms. With coupling biosorption and photocatalysis to develop biomaterial/TiO2 composite photocatalysts is a promising method to remove these trace pollutants because of the synergistic effect. Biomaterials provide multiple function groups which can selectively and efficiently enrich trace pollutants onto the surface of the photocatalysts, thus facilitating the following transformation mediated by TiO2 photocatalysis. Biomaterials can also help the dispersion and recovery of TiO2, or even modify the band structure of TiO2. The fabrication of chitosan/TiO2, cellulose/TiO2, as well as other biomaterial/TiO2 composite photocatalysts is discussed in detail in this review. The application significance of these composite photocatalysts for the selective removal of trace pollutants is also addressed. Several problems should be solved before the realistic applications can be achieved as discussed in the final section.展开更多
The development of low-cost, efficient, and high atomic economy electrocatalysts for hydrogen evolution reaction(HER) in the entire p H range for sustainable hydrogen production is of great importance but still challe...The development of low-cost, efficient, and high atomic economy electrocatalysts for hydrogen evolution reaction(HER) in the entire p H range for sustainable hydrogen production is of great importance but still challenging. Herein, we synthesize a highly dispersed N-doped carbon frames(NCFs) anchored with Co single atoms(SAs) and Co nanoparticles(NPs) catalyst by a doping-adsorption-pyrolysis strategy for electrocatalytic hydrogen evolution. The Co SAs-Co NPs/NCFs catalyst exhibits an excellent HER activity with small overpotential, low Tafel slope, high turnover frequency as well as remarkable stability. It also exhibits a superior HER performance in the entire p H range. Combining with experimental and theoretical calculation, we find that Co SAs with Co-N_(3) coordination structure and Co NPs have a strong interaction for promoting synergistic HER electrocatalytic process. The H_(2)O molecule is easily activated and dissociated on Co NPs, while the generated H^(*) is easily adsorbed on Co SAs for HER, which makes the Co SAs-Co NPs/NCFs catalyst exhibit more suitable H adsorption strength and more conducive to the activation and dissociation of H_(2)O molecules. This work not only proposes a novel idea for constructing coupling catalyst with atomic-level precision, but also provides strong reference for the development of high-efficiency HER electrocatalysts for practical application.展开更多
The soliton spectral tunneling(SST) effect, as a soliton spectral switching phenomenon, enables a soliton to tunnel through a spectrally limited regime of normal dispersion in the fiber with multiple zero dispersion...The soliton spectral tunneling(SST) effect, as a soliton spectral switching phenomenon, enables a soliton to tunnel through a spectrally limited regime of normal dispersion in the fiber with multiple zero dispersion wavelengths(ZDWs).Since initial chirp can affect the behavior of pulse evolution, we numerically study the influence of chirp on the SST in the process of supercontinuum(SC) occurring in a photonic crystal fiber(PCF) with three ZDWs. The linear chirp is imposed by a phase modulation of input pulse while maintaining a constant pulse duration. Interestingly, it is found that the spectral range and flatness can be flexibly tuned by adjusting the initial chirp value. More specifically, positive chirp facilitates soliton self-frequency shifting(SSFS), making the soliton quickly transfer from one anomalous dispersion regime to another accompanied by the generation of dispersive waves(DWs). In this case, the SST effect further expands the spectral range by enhancing both the red-shift of the fundamental soliton and the blue-shift of DWs, thus generating a broader SC. However, negative chirp suppresses the SST effect, resulting in a smoother SC at the expense of bandwidth.Therefore, the findings in this work provide interesting results relating to the influence of initial chirp on the SST to generate a considerably smoother and broader SC, which is extremely useful in many applications, such as wavelength conversion and SC generation.展开更多
Traditional Chinese medicine“Shanju”,the dry stem of Piperaceae plant Piper hancei Maxim,is mainly distributed in southern China.Historically,P.hancei has been used as a substitute for the traditional Chinese medic...Traditional Chinese medicine“Shanju”,the dry stem of Piperaceae plant Piper hancei Maxim,is mainly distributed in southern China.Historically,P.hancei has been used as a substitute for the traditional Chinese medicine“Haitengtong”to treat rheumatism,joint pain,and asthma.At present,chemical constituents of it have been reported.In order to review the advances in chemical and pharmacologic studies and discuss the potential prospects for future investigation,the report summarized over 92 compounds isolated from P.hancei,including alkaloids,organic acid,sterol,aglycone,lignans,volatile oil and others.These compounds exhibited a wide range of bioactivities,such as anti-inflammation,inhibition of platelet aggregation,insecticidal effects and bactericidal activity.展开更多
Artificial vascular graft(AVG)fistula is widely used for hemodialysis treatment in patients with renal failure.However,it has poor elasticity and compliance,leading to stenosis and thrombosis.The ideal artificial bloo...Artificial vascular graft(AVG)fistula is widely used for hemodialysis treatment in patients with renal failure.However,it has poor elasticity and compliance,leading to stenosis and thrombosis.The ideal artificial blood vessel for dialysis should replicate the structure and components of a real artery,which is primarily maintained by collagen in the extracellular matrix(ECM)of arterial cells.Studies have revealed that in hepatitis B virus(HBV)-induced liver fibrosis,hepatic stellate cells(HSCs)become hyperactive and produce excessive ECM fibers.Furthermore,mechanical stimulation can encourage ECM secretion and remodeling of a fiber structure.Based on the above factors,we transfected HSCs with the hepatitis B viral X(HBX)gene for simulating the process of HBV infection.Subsequently,these HBX-HSCs were implanted into a polycaprolactonepolyurethane(PCL-PU)bilayer scaffold in which the inner layer is dense and the outer layer consists of pores,which was mechanically stimulated to promote the secretion of collagen nanofiber from the HBX-HSCs and to facilitate crosslinking with the scaffold.We obtained an ECM-PCL-PU composite bionic blood vessel that could act as access for dialysis after decellularization.Then,the vessel scaffold was implanted into a rabbit’s neck arteriovenous fistula model.It exhibited strong tensile strength and smooth blood flow and formed autologous blood vessels in the rabbit’s body.Our study demonstrates the use of human cells to create biomimetic dialysis blood vessels,providing a novel approach for creating clinical vascular access for dialysis.展开更多
The ocean,with its highly variable and complex meteorological conditions,harbors enormous renewable resources.Triboelectric nanogenerators(TENGs),which possess unique advantages,show exciting prospects in water wave e...The ocean,with its highly variable and complex meteorological conditions,harbors enormous renewable resources.Triboelectric nanogenerators(TENGs),which possess unique advantages,show exciting prospects in water wave energy collection.How to design and optimize TENGs to cover all characteristic water wave energies and achieve efficient energy utilization is emergent.In this paper,we carefully designed and fabricated a columnar multi-layer sliding TENG(CMLS-TENG)that can harvest water wave energy independent of wave height and direction.Drive rods with a hollow acrylic spherical shell were introduced to deliver wave energy,ensuring that the CMLS-TENG can work in all directions from 0°to 360°.Based on the sliding structure,switching the optimized CMLS-TENG is independent of wave heights.The optimized CMLS-TENG can achieve a total power density of 730 mW/m^(3) at a wave height of only 4.8 cm regardless of wave direction,which can illuminate multiple light-emitting diodes(LEDs)to provide lighting and provide power to a watch and a hygrometer for temperature and humidity monitoring.This work provides new choices and hopes for the effective collection of full-range water wave energy.展开更多
Controllable designing of well-defined heterojunction nanostructures provides an insightful strategy for accelerating the kinetics of the hydrogen and oxygen evolution reactions(HER/OER),but such task is still challen...Controllable designing of well-defined heterojunction nanostructures provides an insightful strategy for accelerating the kinetics of the hydrogen and oxygen evolution reactions(HER/OER),but such task is still challenging.Herein,we proposed a protocol of heterojunction interface editing(HIE)strategy by oxygen atoms decoration for synergistic boosting electrocatalytic HER and OER performances.A novel Co/NiCoP nanospheres(NSs)heterojunction was synthesized by crystal seed template transformation method with Ni_(5)P_(4) microspheres as seeds.The effective oxygen atoms interface editing increased the oxidation state of Co atoms and prolonged the Co-P bond length of Co/NiCoP NSs heterojunction,thus the electron localization on P sites was enhanced,leading to the dramatically elevated HER and OER performances simultaneously.The as-constructed O-Co/NiCoP NSs show excellent electrocatalytic activity with 361 and 430 mV vs.reversible hydrogen electrode(RHE)to arrive high current density of 300 mA·cm^(-2)for HER and OER in 1 M KOH as well as good stability.The proposed HIE concept could provide a new perspective on the catalyst design for energy conversion systems.展开更多
In recent years,the prevalence of diabetes in China has continued to rise,with the adult prevalence expected to reach 12.8%by 2023.To control this trend,the government has introduced several policies and invested subs...In recent years,the prevalence of diabetes in China has continued to rise,with the adult prevalence expected to reach 12.8%by 2023.To control this trend,the government has introduced several policies and invested substantial funds in the prevention and treatment of diabetes,achieving certain results.Prediabetes is a stage where blood glucose metabolism can still be restored.For individuals in this stage,dietary and exercise intervention programs are recommended to prevent or delay the onset of diabetes,improve quality of life,and reduce the burden of disease on individuals,families,and society.展开更多
Background:Mitochondria are key regulators in cell proliferation and apoptosis.Alterations in mitochondrial function are closely associated with inflammation and tumorigenesis.This study aimed to investigate whether m...Background:Mitochondria are key regulators in cell proliferation and apoptosis.Alterations in mitochondrial function are closely associated with inflammation and tumorigenesis.This study aimed to investigate whether mitochondrial transcription factor A(TFAM),a key regulator of mitochondrial DNA transcription and replication,is involved in the initiation and progression of colitis-associated cancer(CAC).Methods:TFAM expression was examined in tissue samples of inflammatory bowel diseases(IBD)and CAC by immunohistochemistry.Intestinal epithelial cell(IEC)-specific TFAM-knockout mice(TFAM^(△IEC))and colorectal cancer(CRC)cells with TFAM knockdown or overexpression were used to evaluate the role of TFAMin colitis and the initiation and progression ofCAC.The underlying mechanisms of TFAMwere also explored by analyzingmitochondrial respiration function and biogenesis.Results:The expression of TFAM was downregulated in active IBD and negatively associated with the disease activity.The downregulation of TFAM in IECs was induced by interleukin-6 in a signal transducer and activator of transcription 3(STAT3)/miR-23b-dependent manner.In addition,TFAM knockout impaired IECturnover to promote dextran sulfate sodium(DSS)-induced colitis inmice.Of note,TFAMknockout increased the susceptibility of mice to azoxymethane/DSSinduced CAC and TFAM overexpression protected mice from intestinal inflammation and colitis-associated tumorigenesis.By contrast,TFAM expression was upregulated in CAC tissues and contributed to cell growth.Furthermore,it was demonstrated that β-catenin induced the upregulation of TFAM through c-Myc in CRC cells.Mechanistically,TFAMpromoted the proliferation of both IECs and CRC cells by increasing mitochondrial biogenesis and activity.Conclusions:TFAM plays a dual role in the initiation and progression of CAC,providing a novel understanding of CAC pathogenesis.展开更多
In order to improve the targeting and availability of liposomes to cancer cells,the temperature sensitivity of 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine(DPPC)and the pH sensitivity of PASP in PASP-g-C8 are incorpora...In order to improve the targeting and availability of liposomes to cancer cells,the temperature sensitivity of 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine(DPPC)and the pH sensitivity of PASP in PASP-g-C8 are incorporated in a drug delivery system.A composite pH-temperature dual-sensitive liposomes(CPTLPs)was obtained as an efficient drug delivery system.The bionic bilayer is self-assembled by cholesterol/cationic temperature-sensitive lipids as base layer and pH-sensitive octylamine grafted poly aspartic acid(PASP-g-C8)as anchors coated outside.Cytarabine(CYT)was chosen as a model drug.SEM and DLS were used to observe the morphology characteristics of CPTLPs in different micro environment.The results demonstrated that the CPTLPs remained active in both normal(pH7.4 and 37°C)and tumor tissues(pH 5.0 and 42°C).As a stable colloidal system,the zeta potential of CPTSLs was−41.6 mV.In vitro drug-release experiments,the CTY encapsulated dual-sensitive liposomes,CPTSLs(+),not only have significant pH-temperature sensitivity but have more prolonged release in vitro than control groups.MTT tests results indicated that the cell apoptotic effects induced by CPTSLs(+)were nearly 30%higher than the naked drug CTY in HepG2 cells,and 20%lower apoptotic in vero cells.The CPTSLs(+)sustained a stable emulsion form,less toxic effects on normal cells,and exhibited a good pH-temperature sensitivity,thus expected to be a promising tumor targeting drug delivery.展开更多
The construction of robust coupling catalysts for accelerating electrocatalytic oxygen reduction reaction(ORR)through the modulation of the electronic structure and local atomic configuration is critical but remains c...The construction of robust coupling catalysts for accelerating electrocatalytic oxygen reduction reaction(ORR)through the modulation of the electronic structure and local atomic configuration is critical but remains challenging.Herein,we report a facile and effective isolation-polymerization-pyrolysis(IPP)strategy for high-precision synthesis of single-atomic Mn sites coupled with Fe_(3)C nanoparticles encapsulated in N-doped porous carbon matrixes(Mn SAs/Fe_(3)C NPs@NPC)catalyst derived from predesigned bimetallic Fe/Mn polyphthalocyanine(FeMn-BPPc)conjugated polymer networks by solid-phase reaction approach.Benefiting from the synergistic effects between the single-atomic Mn-N_(4)sites and Fe_(3)C NPs as well as the confinement effect of NPC,the Mn SAs/Fe_(3)C NPs@NPC catalyst exhibited excellent electrocatalytic activity and stability for ORR.The assembled Znair battery displayed larger power density of 186 mW·cm^(−2)than that of Pt/C+Ir/C-based battery.It also exhibits excellent stability without obvious voltage change after 106 cycles with 36 h.Combing in-situ Raman spectra with in-situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy(ATR-SEIRAS)characterization results indicated that the Mn-N_(4)site as an active site for the O_(2)adsorption-activation process,which effectively facilitates the generation of key*OOH intermediates and*OH desorption to promote the multielectron reaction kinetics.Theoretical calculation reveals that the excellent electrocatalytic performance originates from the charge redistribution and the d orbital shift resulting from Mn-Fe bond,which buffers the activity of ORR through the electron reservoir capable of electron donation or releasing.This work paves a novel IPP strategy for constructing high-performance coupling electrocatalyst towards the ORR for energy conversion devices.展开更多
基金the support of the Australia Research Council (ARC) through the Discovery Project (DP230101040)the Natural Science Foundation of Shandong Province (ZR2022QB139, No. ZR2020KF025)+3 种基金the Starting Research Fund (Grant No. 20210122) from the Ludong Universitythe Natural Science Foundation of China (12274190) from the Ludong Universitythe support of the Shandong Youth Innovation Team Introduction and Education Programthe Special Fund for Taishan Scholars Project (No. tsqn202211186) in Shandong Province。
文摘Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis.
基金Supported by the National Natural Science Foundation of China(21525625,21838001)the National Basic Research Program(973 Program)of China(2014CB745100)+1 种基金the(863)High Technology Project of China(2013AA020302)the Chinese Universities Scientific Fund(JD1417)
文摘Trace environmental pollutants have become a serious problem with special attention on the hazardous heavy metals, refractory organics, and pathogenic microorganisms. With coupling biosorption and photocatalysis to develop biomaterial/TiO2 composite photocatalysts is a promising method to remove these trace pollutants because of the synergistic effect. Biomaterials provide multiple function groups which can selectively and efficiently enrich trace pollutants onto the surface of the photocatalysts, thus facilitating the following transformation mediated by TiO2 photocatalysis. Biomaterials can also help the dispersion and recovery of TiO2, or even modify the band structure of TiO2. The fabrication of chitosan/TiO2, cellulose/TiO2, as well as other biomaterial/TiO2 composite photocatalysts is discussed in detail in this review. The application significance of these composite photocatalysts for the selective removal of trace pollutants is also addressed. Several problems should be solved before the realistic applications can be achieved as discussed in the final section.
基金supported by the Taishan Scholars Program of Shandong Province(tsqn201909065)the Shandong Provincial Natural Science Foundation(ZR2020QB174)+3 种基金the Petro China Innovation Foundation(2019D-5007-0401)the National Natural Science Foundation of China(21776315,22108306)the Fundamental Research Funds for the Central Universities(19CX02008A,19CX05001A)the Postgraduate Innovation Fund of China University of Petroleum(East China)(YCX2020037)。
文摘The development of low-cost, efficient, and high atomic economy electrocatalysts for hydrogen evolution reaction(HER) in the entire p H range for sustainable hydrogen production is of great importance but still challenging. Herein, we synthesize a highly dispersed N-doped carbon frames(NCFs) anchored with Co single atoms(SAs) and Co nanoparticles(NPs) catalyst by a doping-adsorption-pyrolysis strategy for electrocatalytic hydrogen evolution. The Co SAs-Co NPs/NCFs catalyst exhibits an excellent HER activity with small overpotential, low Tafel slope, high turnover frequency as well as remarkable stability. It also exhibits a superior HER performance in the entire p H range. Combining with experimental and theoretical calculation, we find that Co SAs with Co-N_(3) coordination structure and Co NPs have a strong interaction for promoting synergistic HER electrocatalytic process. The H_(2)O molecule is easily activated and dissociated on Co NPs, while the generated H^(*) is easily adsorbed on Co SAs for HER, which makes the Co SAs-Co NPs/NCFs catalyst exhibit more suitable H adsorption strength and more conducive to the activation and dissociation of H_(2)O molecules. This work not only proposes a novel idea for constructing coupling catalyst with atomic-level precision, but also provides strong reference for the development of high-efficiency HER electrocatalysts for practical application.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61275137 and 61571186)the Natural Science Foundation of Hunan Province,China(Grant No.2018JJ2061)
文摘The soliton spectral tunneling(SST) effect, as a soliton spectral switching phenomenon, enables a soliton to tunnel through a spectrally limited regime of normal dispersion in the fiber with multiple zero dispersion wavelengths(ZDWs).Since initial chirp can affect the behavior of pulse evolution, we numerically study the influence of chirp on the SST in the process of supercontinuum(SC) occurring in a photonic crystal fiber(PCF) with three ZDWs. The linear chirp is imposed by a phase modulation of input pulse while maintaining a constant pulse duration. Interestingly, it is found that the spectral range and flatness can be flexibly tuned by adjusting the initial chirp value. More specifically, positive chirp facilitates soliton self-frequency shifting(SSFS), making the soliton quickly transfer from one anomalous dispersion regime to another accompanied by the generation of dispersive waves(DWs). In this case, the SST effect further expands the spectral range by enhancing both the red-shift of the fundamental soliton and the blue-shift of DWs, thus generating a broader SC. However, negative chirp suppresses the SST effect, resulting in a smoother SC at the expense of bandwidth.Therefore, the findings in this work provide interesting results relating to the influence of initial chirp on the SST to generate a considerably smoother and broader SC, which is extremely useful in many applications, such as wavelength conversion and SC generation.
文摘Traditional Chinese medicine“Shanju”,the dry stem of Piperaceae plant Piper hancei Maxim,is mainly distributed in southern China.Historically,P.hancei has been used as a substitute for the traditional Chinese medicine“Haitengtong”to treat rheumatism,joint pain,and asthma.At present,chemical constituents of it have been reported.In order to review the advances in chemical and pharmacologic studies and discuss the potential prospects for future investigation,the report summarized over 92 compounds isolated from P.hancei,including alkaloids,organic acid,sterol,aglycone,lignans,volatile oil and others.These compounds exhibited a wide range of bioactivities,such as anti-inflammation,inhibition of platelet aggregation,insecticidal effects and bactericidal activity.
基金supported by the National Natural Science Foundation of China(No.81770294)the Natural Science Foundation of Fujian Province(No.2023J05261),China.
文摘Artificial vascular graft(AVG)fistula is widely used for hemodialysis treatment in patients with renal failure.However,it has poor elasticity and compliance,leading to stenosis and thrombosis.The ideal artificial blood vessel for dialysis should replicate the structure and components of a real artery,which is primarily maintained by collagen in the extracellular matrix(ECM)of arterial cells.Studies have revealed that in hepatitis B virus(HBV)-induced liver fibrosis,hepatic stellate cells(HSCs)become hyperactive and produce excessive ECM fibers.Furthermore,mechanical stimulation can encourage ECM secretion and remodeling of a fiber structure.Based on the above factors,we transfected HSCs with the hepatitis B viral X(HBX)gene for simulating the process of HBV infection.Subsequently,these HBX-HSCs were implanted into a polycaprolactonepolyurethane(PCL-PU)bilayer scaffold in which the inner layer is dense and the outer layer consists of pores,which was mechanically stimulated to promote the secretion of collagen nanofiber from the HBX-HSCs and to facilitate crosslinking with the scaffold.We obtained an ECM-PCL-PU composite bionic blood vessel that could act as access for dialysis after decellularization.Then,the vessel scaffold was implanted into a rabbit’s neck arteriovenous fistula model.It exhibited strong tensile strength and smooth blood flow and formed autologous blood vessels in the rabbit’s body.Our study demonstrates the use of human cells to create biomimetic dialysis blood vessels,providing a novel approach for creating clinical vascular access for dialysis.
基金supported by the National Key R&D Project from Ministry of Science and Technology,China(No.2021YFA1201603)the National Natural Science Foundation of China(Nos.52073032 and 52192611)the Fundamental Research Funds for the Central Universities.
文摘The ocean,with its highly variable and complex meteorological conditions,harbors enormous renewable resources.Triboelectric nanogenerators(TENGs),which possess unique advantages,show exciting prospects in water wave energy collection.How to design and optimize TENGs to cover all characteristic water wave energies and achieve efficient energy utilization is emergent.In this paper,we carefully designed and fabricated a columnar multi-layer sliding TENG(CMLS-TENG)that can harvest water wave energy independent of wave height and direction.Drive rods with a hollow acrylic spherical shell were introduced to deliver wave energy,ensuring that the CMLS-TENG can work in all directions from 0°to 360°.Based on the sliding structure,switching the optimized CMLS-TENG is independent of wave heights.The optimized CMLS-TENG can achieve a total power density of 730 mW/m^(3) at a wave height of only 4.8 cm regardless of wave direction,which can illuminate multiple light-emitting diodes(LEDs)to provide lighting and provide power to a watch and a hygrometer for temperature and humidity monitoring.This work provides new choices and hopes for the effective collection of full-range water wave energy.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.22109090 and 22108306)the Taishan Scholars Program of Shandong Province(No.tsqn201909065)+2 种基金Shandong Provincial Natural Science Foundation(Nos.ZR2021YQ15 and ZR2020QB174)Hefei National Research Center for Physical Sciences at the Microscale(No.KF2021107)the Fundamental Research Funds for the Central Universities(No.22CX07009A)。
文摘Controllable designing of well-defined heterojunction nanostructures provides an insightful strategy for accelerating the kinetics of the hydrogen and oxygen evolution reactions(HER/OER),but such task is still challenging.Herein,we proposed a protocol of heterojunction interface editing(HIE)strategy by oxygen atoms decoration for synergistic boosting electrocatalytic HER and OER performances.A novel Co/NiCoP nanospheres(NSs)heterojunction was synthesized by crystal seed template transformation method with Ni_(5)P_(4) microspheres as seeds.The effective oxygen atoms interface editing increased the oxidation state of Co atoms and prolonged the Co-P bond length of Co/NiCoP NSs heterojunction,thus the electron localization on P sites was enhanced,leading to the dramatically elevated HER and OER performances simultaneously.The as-constructed O-Co/NiCoP NSs show excellent electrocatalytic activity with 361 and 430 mV vs.reversible hydrogen electrode(RHE)to arrive high current density of 300 mA·cm^(-2)for HER and OER in 1 M KOH as well as good stability.The proposed HIE concept could provide a new perspective on the catalyst design for energy conversion systems.
基金Research Results of the College Students’Innovative Entrepreneurial Training Plan Program in Heilongjiang Province in 2024“Multi-intervention Model Construction and Intervention Effect of Pre-diabetic Individual Lifestyle”(Project Number:S202410222115)。
文摘In recent years,the prevalence of diabetes in China has continued to rise,with the adult prevalence expected to reach 12.8%by 2023.To control this trend,the government has introduced several policies and invested substantial funds in the prevention and treatment of diabetes,achieving certain results.Prediabetes is a stage where blood glucose metabolism can still be restored.For individuals in this stage,dietary and exercise intervention programs are recommended to prevent or delay the onset of diabetes,improve quality of life,and reduce the burden of disease on individuals,families,and society.
基金National Natural Science Foundation of China,Grant/Award Numbers:82072722,81830070,81772935,81672340StateKey Laboratory ofCancer Biology Project,Grant/Award Number:CBSKL2019ZZ26。
文摘Background:Mitochondria are key regulators in cell proliferation and apoptosis.Alterations in mitochondrial function are closely associated with inflammation and tumorigenesis.This study aimed to investigate whether mitochondrial transcription factor A(TFAM),a key regulator of mitochondrial DNA transcription and replication,is involved in the initiation and progression of colitis-associated cancer(CAC).Methods:TFAM expression was examined in tissue samples of inflammatory bowel diseases(IBD)and CAC by immunohistochemistry.Intestinal epithelial cell(IEC)-specific TFAM-knockout mice(TFAM^(△IEC))and colorectal cancer(CRC)cells with TFAM knockdown or overexpression were used to evaluate the role of TFAMin colitis and the initiation and progression ofCAC.The underlying mechanisms of TFAMwere also explored by analyzingmitochondrial respiration function and biogenesis.Results:The expression of TFAM was downregulated in active IBD and negatively associated with the disease activity.The downregulation of TFAM in IECs was induced by interleukin-6 in a signal transducer and activator of transcription 3(STAT3)/miR-23b-dependent manner.In addition,TFAM knockout impaired IECturnover to promote dextran sulfate sodium(DSS)-induced colitis inmice.Of note,TFAMknockout increased the susceptibility of mice to azoxymethane/DSSinduced CAC and TFAM overexpression protected mice from intestinal inflammation and colitis-associated tumorigenesis.By contrast,TFAM expression was upregulated in CAC tissues and contributed to cell growth.Furthermore,it was demonstrated that β-catenin induced the upregulation of TFAM through c-Myc in CRC cells.Mechanistically,TFAMpromoted the proliferation of both IECs and CRC cells by increasing mitochondrial biogenesis and activity.Conclusions:TFAM plays a dual role in the initiation and progression of CAC,providing a novel understanding of CAC pathogenesis.
基金The financial support from the National Natural Science Foundation of China(21838001,31961133018,21525625)National Key R&D Program of China(2018YFA0902200)is acknowledged.
文摘In order to improve the targeting and availability of liposomes to cancer cells,the temperature sensitivity of 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine(DPPC)and the pH sensitivity of PASP in PASP-g-C8 are incorporated in a drug delivery system.A composite pH-temperature dual-sensitive liposomes(CPTLPs)was obtained as an efficient drug delivery system.The bionic bilayer is self-assembled by cholesterol/cationic temperature-sensitive lipids as base layer and pH-sensitive octylamine grafted poly aspartic acid(PASP-g-C8)as anchors coated outside.Cytarabine(CYT)was chosen as a model drug.SEM and DLS were used to observe the morphology characteristics of CPTLPs in different micro environment.The results demonstrated that the CPTLPs remained active in both normal(pH7.4 and 37°C)and tumor tissues(pH 5.0 and 42°C).As a stable colloidal system,the zeta potential of CPTSLs was−41.6 mV.In vitro drug-release experiments,the CTY encapsulated dual-sensitive liposomes,CPTSLs(+),not only have significant pH-temperature sensitivity but have more prolonged release in vitro than control groups.MTT tests results indicated that the cell apoptotic effects induced by CPTSLs(+)were nearly 30%higher than the naked drug CTY in HepG2 cells,and 20%lower apoptotic in vero cells.The CPTSLs(+)sustained a stable emulsion form,less toxic effects on normal cells,and exhibited a good pH-temperature sensitivity,thus expected to be a promising tumor targeting drug delivery.
基金State Key Laboratory of Catalytic Materials and Reaction Engineering(RIPP,SINOPEC)Taishan Scholars Program of Shandong Province(No.tsqn201909065)+5 种基金Shandong Provincial Natural Science Foundation(Nos.ZR2021YQ15,ZR2020QB174,and ZR2019MB022)the National Natural Science Foundation of China(Nos.22108306 and 21902182)the Fundamental Research Funds for the Central Universities(Nos.2022YQHH01 and 22CX07009A)the State Key Laboratory of Organic-Inorganic Composites(No.oic202101006)Post-graduate Innovation Fund of China University of Petroleum(East China)(No.YCX2021064)the Research Fund Program of Key Laboratory of Fuel Cell Technology of Guangdong Province,the Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education),and the Key Laboratory of Functional Inorganic Material Chemistry(Heilongjiang University),Ministry of Education.
文摘The construction of robust coupling catalysts for accelerating electrocatalytic oxygen reduction reaction(ORR)through the modulation of the electronic structure and local atomic configuration is critical but remains challenging.Herein,we report a facile and effective isolation-polymerization-pyrolysis(IPP)strategy for high-precision synthesis of single-atomic Mn sites coupled with Fe_(3)C nanoparticles encapsulated in N-doped porous carbon matrixes(Mn SAs/Fe_(3)C NPs@NPC)catalyst derived from predesigned bimetallic Fe/Mn polyphthalocyanine(FeMn-BPPc)conjugated polymer networks by solid-phase reaction approach.Benefiting from the synergistic effects between the single-atomic Mn-N_(4)sites and Fe_(3)C NPs as well as the confinement effect of NPC,the Mn SAs/Fe_(3)C NPs@NPC catalyst exhibited excellent electrocatalytic activity and stability for ORR.The assembled Znair battery displayed larger power density of 186 mW·cm^(−2)than that of Pt/C+Ir/C-based battery.It also exhibits excellent stability without obvious voltage change after 106 cycles with 36 h.Combing in-situ Raman spectra with in-situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy(ATR-SEIRAS)characterization results indicated that the Mn-N_(4)site as an active site for the O_(2)adsorption-activation process,which effectively facilitates the generation of key*OOH intermediates and*OH desorption to promote the multielectron reaction kinetics.Theoretical calculation reveals that the excellent electrocatalytic performance originates from the charge redistribution and the d orbital shift resulting from Mn-Fe bond,which buffers the activity of ORR through the electron reservoir capable of electron donation or releasing.This work paves a novel IPP strategy for constructing high-performance coupling electrocatalyst towards the ORR for energy conversion devices.