The Ni/CeO_2-ZrO_2-Al_2O_3 catalyst with different Al_2O_3 and NiO contentswere prepared by hydrothermal synthesis method. The catalytic performance for CO_2 reforming of CH_4reaction, the interaction among components...The Ni/CeO_2-ZrO_2-Al_2O_3 catalyst with different Al_2O_3 and NiO contentswere prepared by hydrothermal synthesis method. The catalytic performance for CO_2 reforming of CH_4reaction, the interaction among components and the relation between Ni content and catalyst surfacebasicity were investigated. Results show that the interaction between NiO and Al_2O_3 is strongerthan that between NiO and CeO_2-ZrO_2. The addition of Al_2O_3 can prevent the formation of largemetallic Ni ensembles, increase the dispersion of Ni, and improve catalytic activity, but excessAl_2O_3 causes the catalyst to deactivate easily. The interaction between NiO and CeO_2 results inmore facile reduction of surface CeO_2. The existence of a small amount of metallic Ni can increasethe number of basic sites. As metallic Ni may preferentially reside on the strong basic sites,increasing Ni content can weaken the catalyst basicity.展开更多
文摘The Ni/CeO_2-ZrO_2-Al_2O_3 catalyst with different Al_2O_3 and NiO contentswere prepared by hydrothermal synthesis method. The catalytic performance for CO_2 reforming of CH_4reaction, the interaction among components and the relation between Ni content and catalyst surfacebasicity were investigated. Results show that the interaction between NiO and Al_2O_3 is strongerthan that between NiO and CeO_2-ZrO_2. The addition of Al_2O_3 can prevent the formation of largemetallic Ni ensembles, increase the dispersion of Ni, and improve catalytic activity, but excessAl_2O_3 causes the catalyst to deactivate easily. The interaction between NiO and CeO_2 results inmore facile reduction of surface CeO_2. The existence of a small amount of metallic Ni can increasethe number of basic sites. As metallic Ni may preferentially reside on the strong basic sites,increasing Ni content can weaken the catalyst basicity.