In practical survey sampling, nonresponse phenomenon is unavoidable. How to impute missing data is an important problem. There are several imputation methods in the literature. In this paper, the imputation method of ...In practical survey sampling, nonresponse phenomenon is unavoidable. How to impute missing data is an important problem. There are several imputation methods in the literature. In this paper, the imputation method of the mean of ratios for missing data under uniform response is applied to the estimation of a finite population mean when the PPSWR sampling is used. The imputed estimator is valid under the corresponding response mechanism regardless of the model as well as under the ratio model regardless of the response mechanism. The approximately unbiased jackknife variance estimator is also presented. All of these results are extended to the case of non-uniform response. Simulation studies show the good performance of the proposed estimators.展开更多
基金Supported by NationalNatural Science Foundation of China (Grant Nos. 70625004, 10721101 and 70933003)
文摘In practical survey sampling, nonresponse phenomenon is unavoidable. How to impute missing data is an important problem. There are several imputation methods in the literature. In this paper, the imputation method of the mean of ratios for missing data under uniform response is applied to the estimation of a finite population mean when the PPSWR sampling is used. The imputed estimator is valid under the corresponding response mechanism regardless of the model as well as under the ratio model regardless of the response mechanism. The approximately unbiased jackknife variance estimator is also presented. All of these results are extended to the case of non-uniform response. Simulation studies show the good performance of the proposed estimators.