Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,t...Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,to predict the recurrence of cerebrovascular events in patients with ischemic stroke has not been determined comprehensively.While previous studies have shown a link between retinal vessel diameter and recurrent cerebrovascular events,they have not incorporated this information into a predictive model.Therefore,this study aimed to investigate the relationship between retinal vessel diameter and subsequent cerebrovascular events in patients with acute ischemic stroke.Additionally,we sought to establish a predictive model by combining retinal veessel diameter with traditional risk factors.We performed a prospective observational study of 141 patients with acute ischemic stroke who were admitted to the First Affiliated Hospital of Jinan University.All of these patients underwent digital retinal imaging within 72 hours of admission and were followed up for 3 years.We found that,after adjusting for related risk factors,patients with acute ischemic stroke with mean arteriolar diameter within 0.5-1.0 disc diameters of the disc margin(MAD_(0.5-1.0DD))of≥74.14μm and mean venular diameter within 0.5-1.0 disc diameters of the disc margin(MVD_(0.5-1.0DD))of≥83.91μm tended to experience recurrent cerebrovascular events.We established three multivariate Cox proportional hazard regression models:model 1 included traditional risk factors,model 2 added MAD_(0.5-1.0DD)to model 1,and model 3 added MVD0.5-1.0DD to model 1.Model 3 had the greatest potential to predict subsequent cerebrovascular events,followed by model 2,and finally model 1.These findings indicate that combining retinal venular or arteriolar diameter with traditional risk factors could improve the prediction of recurrent cerebrovascular events in patients with acute ischemic stroke,and that retinal imaging could be a useful and non-invasive method for identifying high-risk patients who require closer monitoring and more aggressive management.展开更多
Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from p...Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs.展开更多
Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational...Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems.展开更多
Leaf trait networks(LTNs)visualize the intricate linkages reflecting plant trait-functional coordination.Typical karst vegetation,developed from lithological dolomite and limestone,generally exhibits differential comm...Leaf trait networks(LTNs)visualize the intricate linkages reflecting plant trait-functional coordination.Typical karst vegetation,developed from lithological dolomite and limestone,generally exhibits differential communities,possibly due to habitat rock exposure,soil depth,and soil physicochemical properties variations,leading to a shift from plant trait variation to functional linkages.However,how soil and habitat quality affect the differentiation of leaf trait networks remains unclear.LTNs were constructed for typical dolomite and limestone habitats by analyzing twenty-one woody plant leaf traits across fifty-six forest subplots in karst mountains.The differences between dolomite and limestone LTNs were compared using network parameters.The network association of soil and habitat quality was analyzed using redundancy analysis(RDA),Mantle's test,and a random forest model.The limestone LTN exhibited significantly higher edge density with lower diameter and average path length when compared to the dolomite LTN.It indicates LTN differentiation,with the limestone network displaying a more compact architecture and higher connectivity than the dolomite network.The specific leaf phosphorus and leaf nitrogen contents of dolomite LTN,as well as the leaf mass and leaf carbon contents of limestone LTN,significantly contributed to network degree and closeness,serving as crucial node traits regulating LTN connectedness.Additionally,both habitat LTNs significantly correlated with soil nitrogen and phosphorus,stoichiometric ratios,pH,and organic carbon,as well as soil depth and rock exposure rates,with soil depth and rock exposure showing greater relative importance.Soil depth and rock exposure dominate trait network differentiation,with the limestone habitat exhibiting a more compact network architecture than the dolomite habitat.展开更多
The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pe...The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pesticide residues in tea products exceed the maximum residue limits. However, the complex matrices present in tea samples comprise a major challenge in the analytical detection of pesticide residues. In this study, nine types of lateral flow immunochromatographic strips (LFICSs) were developed to detect the pesticides of interest (fenpropathrin, chlorpyrifos, imidacloprid, thiamethoxam, acetamiprid, carbendazim, chlorothalonil, pyraclostrobin, and iprodione). To reduce the interference of tea substrates on the assay sensitivity, the pretreatment conditions for tea samples, including the extraction solvent, extraction time, and purification agent, were optimized for the simultaneous detection of these pesticides. The entire testing procedure (including pretreatment and detection) could be completed within 30 min. The detected results of authentic tea samples were confirmed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), which suggest that the LFICS coupled with sample rapid pretreatment can be used for on-site rapid screening of the target pesticide in tea products prior to their market release.展开更多
Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to ...Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometersize pyramids.Here,we introduced a bulky organic molecule(4-fluorobenzylamine hydroiodide(F-PMAI))as a perovskite additive.It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F^(−)and FA^(+)and reduce(111)facet surface energy due to enhanced adsorption energy of F-PMAI on the(111)facet.Besides,the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth,which can passivate interface defects through strong interaction between F-PMA+and undercoordinated Pb^(2+)/I^(−).As a result,the additive facilitates the formation of large perovskite grains and(111)preferred orientation with a reduced trap-state density,thereby promoting charge carrier transportation,and enhancing device performance and stability.The perovskite/silicon TSCs achieved a champion efficiency of 30.05%based on a silicon thin film tunneling junction.In addition,the devices exhibit excellent longterm thermal and light stability without encapsulation.This work provides an effective strategy for achieving efficient and stable TSCs.展开更多
Indium selenide has garnered significant attention for high volumetric capacities,but is currently plagued by the sluggish charge transfer kinetics,severe volume effect,and rapid capacity degradation that hinder their...Indium selenide has garnered significant attention for high volumetric capacities,but is currently plagued by the sluggish charge transfer kinetics,severe volume effect,and rapid capacity degradation that hinder their practical applications.Herein,we design,synthesize,and characterize a multi-kernel-shell structure comprised of indium selenide encapsulated within carbon nanospheres(referred to as m-K-S In_(2)Se_(3)@C)through an integrated approach involving a hydrothermal method followed by a gaseous selenization process.Importantly,experimental measurements and density functional theory calculations confirm that the m-K-S In_(2)Se_(3)@C not only improve the adsorption capability for Li-ions but also lower the energy barrier for Li-ions diffusion.Profiting from numerous contact points,shorter diffusion distances and an improved volume buffering effect,the m-K-S In_(2)Se_(3)@C achieves an 800 mA h g^(−1)capacity over 1000 loops at 1000 mA g^(−1),a 520 mA h g^(−1)capacity at 5000 mA g^(−1)and an energy density of 270 Wh kg^(−1)when coupled with LiFePO4,surpassing most related anodes reported before.Broadly,the m-K-S structure with unique nano-micro structure offers a new approach to the design of advanced anodes for LIBs.展开更多
Circular RNAs(circRNAs)have been recognized as pivotal regulators in tumorigenesis,yet the biological functions as well as molecular mechanisms of the majority of circRNAs in hepatocellular carcinoma(HCC)remain elusiv...Circular RNAs(circRNAs)have been recognized as pivotal regulators in tumorigenesis,yet the biological functions as well as molecular mechanisms of the majority of circRNAs in hepatocellular carcinoma(HCC)remain elusive.We sought to unveil the expression profile and biological role of circMYBL2 in HCC.Initial microarray analyses were conducted to probe the expression profile of circMYBL2 in HCC cells,and qRT‒PCR analysis was then performed in HCC cell lines and tissues,revealing significant upregulation of circMYBL2.Subsequent experiments were conducted to evaluate the biological function of circMYBL2 in HCC progression.Furthermore,bioinformatics analysis,qRT‒PCR analysis,luciferase reporter assays,and western blot analysis were employed to investigate the interplay among circMYBL2,miR-1205,and E2F1.CircMYBL2 was found to exhibit marked upregulation in tumor tissues as well as HCC cell lines.Elevated expression of circMYBL2 increased the proliferation and migration of HCC cells,whereas circMYBL2 knockdown elicited contrasting effects.Mechanistically,our results indicated that circMYBL2 promoted E2F1 expression and facilitated HCC progression by sponging miR-1205.Our findings revealed that circMYBL2 contributed to HCC progression through the circMYBL2/miR-1205/E2F1 axis,suggesting the potential of circMYBL2 as a novel target for HCC treatment or a prognostic biomarker for HCC.展开更多
Long non-coding RNAs(lncRNAs)have been implicated in cancer progression and drug resistance development.Moreover,there is evidence that lncRNA HOX transcript antisense intergenic RNA(HOTAIR)is involved in colorectal c...Long non-coding RNAs(lncRNAs)have been implicated in cancer progression and drug resistance development.Moreover,there is evidence that lncRNA HOX transcript antisense intergenic RNA(HOTAIR)is involved in colorectal cancer(CRC)progression.The present study aimed to examine the functional role of lncRNA HOTAIR in conferring radiotherapy resistance in CRC cells,as well as the underlying mechanism.The relative expression levels of HOTAIR were examined in 70 pairs of CRC tumor and para-cancerous tissues,as well as in radiosensitive and radioresistant samples.The correlations between HOTAIR expression levels and clinical features of patients with CRC were assessed using the Chi-square test.Functional assays such as cell proliferation,colony formation and apoptosis assays were conducted to determine the radiosensitivity in CRC cells with HOTAIR silencing after treatment with different doses of radiation.RNA pull-down assay andfluorescence in situ hybridization(FISH)were used to determine the interaction between HOTAIR and DNA damage response mediator ataxia-telangiectasia mutated-and Rad3-related(ATR).HOTAIR was significantly upregulated in CRC tumor tissues,especially in radioresistant tumor samples.The elevated expression of HOTAIR was correlated with more advanced histological grades,distance metastasis and the poor prognosis in patients with CRC.Silencing HOTAIR suppressed the proliferation and promoted apoptosis and radiosensitivity in CRC cells.HOTAIR knockdown also inhibited the tumorigenesis of CRC cells and enhanced the sensitivity to radiotherapy in a mouse xenograft model.Moreover,the data showed that HOTAIR could interact with ATR to regulate the DNA damage repair signaling pathway.Silencing HOTAIR impaired the ATR-ATR interacting protein(ATRIP)complex and signaling in cell cycle progression.Collectively,the present results indicate that lncRNA HOTAIR facilitates the DNA damage response pathway and promotes radioresistance in CRC cells by targeting ATR.展开更多
BACKGROUND Colorectal cancer(CRC)is among the most prevalent and life-threatening malignancies worldwide.Syndecan-2 methylation(mSDC2)testing has emerged as a widely used biomarker for early detection of CRC in stool ...BACKGROUND Colorectal cancer(CRC)is among the most prevalent and life-threatening malignancies worldwide.Syndecan-2 methylation(mSDC2)testing has emerged as a widely used biomarker for early detection of CRC in stool and serum samples.Cancer(CRC)is among the most prevalent and life-threatening malignancies worldwide.mSDC2 testing has emerged as a widely used biomarker for early detection of CRC in stool and serum samples.AIM To validate the effectiveness of fecal DNA mSDC2 testing in the detection of CRC among a high-risk Chinese population to provide evidence-based data for the development of diagnostic and/or screening guidelines for CRC in China.METHODS A high-risk Chinese cohort consisting of 1130 individuals aged 40-79 years was selected for evaluation via fecal mSDC2 testing.Sensitivity and specificity for CRC,advanced adenoma(AA)and advanced colorectal neoplasia(ACN)were determined.High-risk factors for the incidence of colorectal lesions were determined and a logistic regression model was constructed to reflect the efficacy of the test.RESULTS A total of 1035 high-risk individuals were included in this study according to established criteria.Among them,16 suffered from CRC(1.55%),65 from AA(6.28%)and 189 from non-AAs(18.26%);150 patients were diagnosed with polyps(14.49%).Diagnoses were established based upon colonoscopic and pathological examinations.Sensitivities of the mSDC2 test for CRC and AA were 87.50%and 40.00%,respectively;specificities were 95.61%for other groups.Positive predictive values of the mSDC2 test for CRC,AA and ACN were 16.09%,29.89%and 45.98%,respectively;the negative predictive value for CRC was 99.79%.After adjusting for other high-risk covariates,mSDC2 test positivity was found to be a significant risk factor for the occurrence of ACN(P<0.001).CONCLUSION Our findings confirmed that offering fecal mSDC2 testing and colonoscopy in combination for CRC screening is effective for earlier detection of malignant colorectal lesions in a high-risk Chinese population.展开更多
BACKGROUND The serratus anterior muscle,located in the lateral aspect of the thorax,plays a crucial role in shoulder movement and stability.Thoracoscopic surgery,while minimally invasive,often results in significant p...BACKGROUND The serratus anterior muscle,located in the lateral aspect of the thorax,plays a crucial role in shoulder movement and stability.Thoracoscopic surgery,while minimally invasive,often results in significant postoperative pain,complicating patient recovery and potentially extending hospital stays.Traditional anesthesia methods may not adequately address this pain,leading to increased complications such as agitation due to inadequate pain management.AIM To evaluate the application value of ultrasound-guided serratus anterior plane block(SAPB)in patients undergoing thoracoscopic surgery,focusing on its effects on postoperative analgesia and rehabilitation.METHODS Eighty patients undergoing thoracoscopic surgery between August 2021 and December 2022 were randomly divided into two groups:An observation group receiving ultrasound-guided SAPB and a control group receiving standard care without SAPB.Both groups underwent general anesthesia and were monitored for blood pressure,heart rate(HR),oxygen saturation,and pulse.The primary outcomes measured included mean arterial pressure(MAP),HR,postoperative visual analogue scale(VAS)scores for pain,supplemental analgesic use,and incidence of agitation.RESULTS The observation group showed significantly lower cortisol and glucose concentrations at various time points post-operation compared to the control group,indicating reduced stress responses.Moreover,MAP and HR levels were lower in the observation group during and after surgery.VAS scores were significantly lower in the observation group at 1 h,4 h,6 h,and 12 h post-surgery,and the rates of analgesic supplementation and agitation were significantly reduced compared to the control group.CONCLUSION Ultrasound-guided SAPB significantly improves postoperative analgesia and reduces agitation in patients undergoing thoracoscopic surgery.This technique stabilizes perioperative vital signs,decreases the need for supplemental analgesics,and minimizes postoperative pain and stress responses,underscoring its high application value in enhancing patient recovery and rehabilitation post-thoracoscopy.展开更多
Tanshinone and phenolic acids are the most important active substances of Salvia miltiorrhiza,and the insight into their transcriptional regulatory mechanisms is an essential process to increase their content in vivo....Tanshinone and phenolic acids are the most important active substances of Salvia miltiorrhiza,and the insight into their transcriptional regulatory mechanisms is an essential process to increase their content in vivo.SmMYB36 has been found to have important regulatory functions in the synthesis of tanshinone and phenolic acid;paradoxically,its mechanism of action in S.miltiorrhiza is not clear.Here,we demonstrated that SmMYB36 functions as a promoter of tanshinones accumulation and a suppressor of phenolic acids through the generation of SmMYB36 overexpressed and chimeric SmMYB36-SRDX(EAR repressive domain)repressor hairy roots in combination with transcriptomic-metabolomic analysis.SmMYB36 directly down-regulate the key enzyme gene of primary metabolism,SmGAPC,up-regulate the tanshinones biosynthesis branch genes SmDXS2,SmGGPPS1,SmCPS1 and down-regulate the phenolic acids biosynthesis branch enzyme gene,SmRAS.Meanwhile,SmERF6,a positive regulator of tanshinone synthesis activating SmCPS1,was up-regulated and SmERF115,a positive regulator of phenolic acid biosynthesis activating SmRAS,was down-regulated.Furthermore,the seven acidic amino acids at the C-terminus of SmMYB36 are required for both self-activating domain and activation of target gene expression.As a consequence,this study contributes to reveal the potential relevance of transcription factors synergistically regulating the biosynthesis of tanshinone and phenolic acid.展开更多
The rapidly growing world population,water shortage,and food security are promising problems for sustainable agriculture.Farmers adopt higher irrigation and fertilizer applications to increase crop production resultin...The rapidly growing world population,water shortage,and food security are promising problems for sustainable agriculture.Farmers adopt higher irrigation and fertilizer applications to increase crop production resulting in environmental pollution.This study aimed to identify the long-term effects of intelligent water and fertilizers used in corn yield and soil nutrient status.A series of field experiments were conducted for six years with treatments as:farmer accustomed to fertilization used as control(CON),fertilizer decrement(KF),fertilizer decrement+watersaving irrigation(BMP1);combined application of organic and inorganic fertilizer+water-saving irrigation(BMP2),and combined application of controlled-release fertilizer(BMP3).A significant improvement was observed in soil organic matter(14.9%),nitrate nitrogen(106.7%),total phosphorus(23.9%),available phosphorus(26.2%),straw yield(44.8%),and grain yield(54.7%)with BMP2 treatment as compared to CON.The study concludes that integrating chemical and organic fertilizers with water-saving irrigation(BMP2)is a good approach to increasing corn productivity,ensuring water safety and improving soil health.The limitations of the current study include the identification of fertilizer type and its optimum dose,irrigation water type,and geographical position.展开更多
Plant Dna JA proteins act as molecular chaperones in response to environmental stressors.The purpose of this study was to characterize the function and regulatory mechanisms of Dna JA genes in soybean.Gene expression ...Plant Dna JA proteins act as molecular chaperones in response to environmental stressors.The purpose of this study was to characterize the function and regulatory mechanisms of Dna JA genes in soybean.Gene expression profiles in various soybean tissues at various stages of development indicated that Gm Dna JAs function in the coordination of stress and plant hormone responses.Gm Dna JA6 was identified as a candidate regulator of saline and alkaline stress resistance and Gm Dna JA6 overexpression lines showed increased soybean saline and alkaline tolerance.Dna J interacted with Hsp70,and Gm Hsp70 increased the saline and alkaline tolerance of plants with chimeric soybean hairy roots.展开更多
The concept of tandem solar cells(TSCs) is an effective way to substantially further improve the efficiency of solar cells. The excellent optoelectronic properties and bandgap tunability of perovskites make them promi...The concept of tandem solar cells(TSCs) is an effective way to substantially further improve the efficiency of solar cells. The excellent optoelectronic properties and bandgap tunability of perovskites make them promising for constructing efficient TSCs. Currently, TSCs based on perovskite have been extensively studied. Besides, the performance of organic solar cells has been greatly improved recently due to the wider and more efficient spectral utilization. Accordingly, research on perovskite/organic TSCs has garnered significant attention. It has potential application advantages in emerging fields such as wearable devices by virtue of flexibility. In addition, orthogonal solvents can be adopted to realize the separate preparation of subcells with the solution method, which greatly reduces fabrication complexity;moreover, fabrication with less equipment significantly cuts down the device cost. Meanwhile, organics with more adjustability on the optoelectronic properties provide more tuning strategies for high-performance perovskite/organic TSCs. However, comprehensive and timely reviews on the perovskite/organic TSCs are deficient. Therefore, we expect to accomplish a review on this innovative TSCs to facilitate researchers with a deeper understanding of perovskite/organic TSCs. Herein, we firstly review the significant progress of perovskite and organic solar cells. Then, current achievements of perovskite/organic TSCs are summarized and introduced with a particular focus on the device structure design. Finally, we discuss existential challenges and propose effective strategies for future engineering.展开更多
Background:Atrioventricular septal defects(AVSDs)are screened and diagnosed usually rely on the imaging characteristics of fetal echocardiography(FE).However,diagnosis on images is heavily depended on sonographers’ex...Background:Atrioventricular septal defects(AVSDs)are screened and diagnosed usually rely on the imaging characteristics of fetal echocardiography(FE).However,diagnosis on images is heavily depended on sonographers’experience and the quantitative data are rarely studied.Objective:This study aimed to realize the prenatal diagnosis of AVSDs by analyzing the quantitative data on FE.Methods:One hundred and thirteen cardiac quantitative data was analyzed in 370 normal and 49 AVSDs fetuses retrospectively.The top six with the highest diagnostic accuracy rate were acquired according to the area under the curve(AUC),and the diagnostic value of six variables was analyzed.Results:Six parameters obtained on the four-chamber view(4CHV),including the atrial to ventricular length ratio in end-diastole(AVLR-ED),AVLR-ED combined with the atrial to ventricular length ratio in end-systole(AVLR-ES),quantile score(Q score)of AVLR-ED,Q score of AVLR-ES,Q score of ventricle length in end-diastole(VL-ED),and AVLR-ES,were the top six with the highest diagnostic value,and the AUC was 0.99(95%CI 0.99–1.00),0.99(95%CI 0.99–1.00),0.99(95%CI 0.98–1.00),0.95(95%CI 0.91–0.99),0.93(95%CI 0.87–0.99),and 0.91(95%CI 0.83–1.00),respectively.And within the 20%false positive rate,the diagnostic sensitivity was greater than 100%,100%,100%,90%,90%,and 88%,respectively.Conclusions:Six variables could be used for prenatal diagnosis of AVSDs.Among them,AVLR-ED and Q score of AVLR-ED,obtained on the 4CHV,were more convenient to acquire and had higher diagnostic accuracy.展开更多
Knowledge graph(KG)fact prediction aims to complete a KG by determining the truthfulness of predicted triples.Reinforcement learning(RL)-based approaches have been widely used for fact prediction.However,the existing ...Knowledge graph(KG)fact prediction aims to complete a KG by determining the truthfulness of predicted triples.Reinforcement learning(RL)-based approaches have been widely used for fact prediction.However,the existing approaches largely suffer from unreliable calculations on rule confidences owing to a limited number of obtained reasoning paths,thereby resulting in unreliable decisions on prediction triples.Hence,we propose a new RL-based approach named EvoPath in this study.EvoPath features a new reward mechanism based on entity heterogeneity,facilitating an agent to obtain effective reasoning paths during random walks.EvoPath also incorporates a new postwalking mechanism to leverage easily overlooked but valuable reasoning paths during RL.Both mechanisms provide sufficient reasoning paths to facilitate the reliable calculations of rule confidences,enabling EvoPath to make precise judgments about the truthfulness of prediction triples.Experiments demonstrate that EvoPath can achieve more accurate fact predictions than existing approaches.展开更多
The increasing world population has forced excessive chemical fertilizer and irrigation to complete the global food demand,deteriorating the water quality and nutrient losses.Short-term studies do not compile the evid...The increasing world population has forced excessive chemical fertilizer and irrigation to complete the global food demand,deteriorating the water quality and nutrient losses.Short-term studies do not compile the evidences;therefore,the study aimed to identify the effectiveness of reduced doses of inorganic fertilizer and water-saving practices,hence,a six-year experiment(2015-2020)was conducted in China to address the knowledge gap.The experimental treatments were:farmer accustomed fertilization used as control(525:180:30 kg NPK ha^(-1)),fertilizer decrement(450:150:15 kg NPK ha^(-1)),fertilizer decrement+water-saving irrigation(450:150:15 kg NPK ha^(-1)),application of organic and inorganic fertilizer+water-saving irrigation(375:120:0 kg NPK ha^(-1)+4.5 tones organic fertilizer ha^(-1)),and application of controlled-release fertilizer(80:120:15 kg NPK ha^(-1)).Each treatment was replicated thrice following a randomized complete block design.The results achieved herein showed that control has the highest losses in the six-year study for total nitrogen(225.97 mg L^(-1)),total soluble nitrogen(121.58 mg L^(-1)),nitrate nitrogen(0.93 mg L^(-1)),total phosphorus(0.57 mg L^(-1)),and total soluble phosphorus(0.57 mg L^(-1))respectively.Reduced fertilizer and water application improved crop nutrient uptake,nitrogen concentration was significantly enhanced with organic and inorganic fertilizer+water-saving irrigation,P concentration was increased with fertilizer decrement+water-saving irrigation,and K concentration was improved with fertilizer decrement+water-saving irrigation.Hence,this study concludes that reduced inorganic fertilizer dose combined with water-saving practices is significantly helpful in reducing nutrient leaching losses and improving nutrient uptake and water pollution.Further studies are needed to explore the impacts of reduced fertilization and water-saving irrigation on leaching losses.The benefits at different climatic conditions,soil types,and fertilizer types with application methods are also a research gap.展开更多
基金supported by the Youth Fund of Fundamental Research Fund for the Central Universities of Jinan University,No.11622303(to YZ).
文摘Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,to predict the recurrence of cerebrovascular events in patients with ischemic stroke has not been determined comprehensively.While previous studies have shown a link between retinal vessel diameter and recurrent cerebrovascular events,they have not incorporated this information into a predictive model.Therefore,this study aimed to investigate the relationship between retinal vessel diameter and subsequent cerebrovascular events in patients with acute ischemic stroke.Additionally,we sought to establish a predictive model by combining retinal veessel diameter with traditional risk factors.We performed a prospective observational study of 141 patients with acute ischemic stroke who were admitted to the First Affiliated Hospital of Jinan University.All of these patients underwent digital retinal imaging within 72 hours of admission and were followed up for 3 years.We found that,after adjusting for related risk factors,patients with acute ischemic stroke with mean arteriolar diameter within 0.5-1.0 disc diameters of the disc margin(MAD_(0.5-1.0DD))of≥74.14μm and mean venular diameter within 0.5-1.0 disc diameters of the disc margin(MVD_(0.5-1.0DD))of≥83.91μm tended to experience recurrent cerebrovascular events.We established three multivariate Cox proportional hazard regression models:model 1 included traditional risk factors,model 2 added MAD_(0.5-1.0DD)to model 1,and model 3 added MVD0.5-1.0DD to model 1.Model 3 had the greatest potential to predict subsequent cerebrovascular events,followed by model 2,and finally model 1.These findings indicate that combining retinal venular or arteriolar diameter with traditional risk factors could improve the prediction of recurrent cerebrovascular events in patients with acute ischemic stroke,and that retinal imaging could be a useful and non-invasive method for identifying high-risk patients who require closer monitoring and more aggressive management.
基金the supports from the National Natural Science Foundation of China(Nos.62264012,62164009)Inner Mongolia Higher Education Research Project(No.NJZZ22343)+1 种基金Inner Mongolia University Research Foundation for Advanced Talents in 2021(No.10000-21311201/005)the Inner Mongolia Autonomous Region for Advanced Talents in 2020(No.12000-12102628)。
文摘Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs.
基金This work was jointly supported by the National Natural Science Foundation of China(Grant Nos.41975137,42175012,and 41475097)the National Key Research and Development Program(Grant No.2018YFF0300103).
文摘Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems.
基金supported by the National Natural Science Foundation of China(NSFC:32260268)the Science and Technology Project of Guizhou Province[(2021)General-455]the Guizhou Hundred-level Innovative Talents Project[Qian-ke-he platform talents(2020)6004-2].
文摘Leaf trait networks(LTNs)visualize the intricate linkages reflecting plant trait-functional coordination.Typical karst vegetation,developed from lithological dolomite and limestone,generally exhibits differential communities,possibly due to habitat rock exposure,soil depth,and soil physicochemical properties variations,leading to a shift from plant trait variation to functional linkages.However,how soil and habitat quality affect the differentiation of leaf trait networks remains unclear.LTNs were constructed for typical dolomite and limestone habitats by analyzing twenty-one woody plant leaf traits across fifty-six forest subplots in karst mountains.The differences between dolomite and limestone LTNs were compared using network parameters.The network association of soil and habitat quality was analyzed using redundancy analysis(RDA),Mantle's test,and a random forest model.The limestone LTN exhibited significantly higher edge density with lower diameter and average path length when compared to the dolomite LTN.It indicates LTN differentiation,with the limestone network displaying a more compact architecture and higher connectivity than the dolomite network.The specific leaf phosphorus and leaf nitrogen contents of dolomite LTN,as well as the leaf mass and leaf carbon contents of limestone LTN,significantly contributed to network degree and closeness,serving as crucial node traits regulating LTN connectedness.Additionally,both habitat LTNs significantly correlated with soil nitrogen and phosphorus,stoichiometric ratios,pH,and organic carbon,as well as soil depth and rock exposure rates,with soil depth and rock exposure showing greater relative importance.Soil depth and rock exposure dominate trait network differentiation,with the limestone habitat exhibiting a more compact network architecture than the dolomite habitat.
基金supported by grants from Shanghai Agriculture Applied Technology Development Program,China(Grant No.:2020-02-08-00-08-F01456)the Key Research and Development Program of Zhejiang Province,China(Grant No.:2020C02024-2).
文摘The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pesticide residues in tea products exceed the maximum residue limits. However, the complex matrices present in tea samples comprise a major challenge in the analytical detection of pesticide residues. In this study, nine types of lateral flow immunochromatographic strips (LFICSs) were developed to detect the pesticides of interest (fenpropathrin, chlorpyrifos, imidacloprid, thiamethoxam, acetamiprid, carbendazim, chlorothalonil, pyraclostrobin, and iprodione). To reduce the interference of tea substrates on the assay sensitivity, the pretreatment conditions for tea samples, including the extraction solvent, extraction time, and purification agent, were optimized for the simultaneous detection of these pesticides. The entire testing procedure (including pretreatment and detection) could be completed within 30 min. The detected results of authentic tea samples were confirmed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), which suggest that the LFICS coupled with sample rapid pretreatment can be used for on-site rapid screening of the target pesticide in tea products prior to their market release.
基金the financial support of National Key Research and Development Program of China(Grant No.2023YFB4202503)the Joint Funds of the National Natural Science Foundation of China(Grant No.U21A2072)+7 种基金Natural Science Foundation of China(Grant No.62274099)Natural Science Foundation of Tianjin(No.20JCQNJC02070)China Postdoctoral Science Foundation(No.2020T130317)the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China(Grant No.B16027)Tianjin Science and Technology Project(Grant No.18ZXJMTG00220)Key R&D Program of Hebei Province(No.19214301D)provided by the Haihe Laboratory of Sustainable Chemical Transformationsthe Fundamental Research Funds for the Central Universities,Nankai University.
文摘Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometersize pyramids.Here,we introduced a bulky organic molecule(4-fluorobenzylamine hydroiodide(F-PMAI))as a perovskite additive.It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F^(−)and FA^(+)and reduce(111)facet surface energy due to enhanced adsorption energy of F-PMAI on the(111)facet.Besides,the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth,which can passivate interface defects through strong interaction between F-PMA+and undercoordinated Pb^(2+)/I^(−).As a result,the additive facilitates the formation of large perovskite grains and(111)preferred orientation with a reduced trap-state density,thereby promoting charge carrier transportation,and enhancing device performance and stability.The perovskite/silicon TSCs achieved a champion efficiency of 30.05%based on a silicon thin film tunneling junction.In addition,the devices exhibit excellent longterm thermal and light stability without encapsulation.This work provides an effective strategy for achieving efficient and stable TSCs.
基金supported by the National Natural Science Foundation of China(22101065 and 51972075)the Heilongjiang Provincial Natural Science Foundation of China(YQ2021B001)+1 种基金the Project funded by China Postdoctoral Science Foundation(2023T160153 and 2020M681075)the Fundamental Research Funds for the Central Universities.
文摘Indium selenide has garnered significant attention for high volumetric capacities,but is currently plagued by the sluggish charge transfer kinetics,severe volume effect,and rapid capacity degradation that hinder their practical applications.Herein,we design,synthesize,and characterize a multi-kernel-shell structure comprised of indium selenide encapsulated within carbon nanospheres(referred to as m-K-S In_(2)Se_(3)@C)through an integrated approach involving a hydrothermal method followed by a gaseous selenization process.Importantly,experimental measurements and density functional theory calculations confirm that the m-K-S In_(2)Se_(3)@C not only improve the adsorption capability for Li-ions but also lower the energy barrier for Li-ions diffusion.Profiting from numerous contact points,shorter diffusion distances and an improved volume buffering effect,the m-K-S In_(2)Se_(3)@C achieves an 800 mA h g^(−1)capacity over 1000 loops at 1000 mA g^(−1),a 520 mA h g^(−1)capacity at 5000 mA g^(−1)and an energy density of 270 Wh kg^(−1)when coupled with LiFePO4,surpassing most related anodes reported before.Broadly,the m-K-S structure with unique nano-micro structure offers a new approach to the design of advanced anodes for LIBs.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515010403,Ning Lyu)Natural Science Foundation of Guangdong Province,China(No.1914050001553,Dong Chen).
文摘Circular RNAs(circRNAs)have been recognized as pivotal regulators in tumorigenesis,yet the biological functions as well as molecular mechanisms of the majority of circRNAs in hepatocellular carcinoma(HCC)remain elusive.We sought to unveil the expression profile and biological role of circMYBL2 in HCC.Initial microarray analyses were conducted to probe the expression profile of circMYBL2 in HCC cells,and qRT‒PCR analysis was then performed in HCC cell lines and tissues,revealing significant upregulation of circMYBL2.Subsequent experiments were conducted to evaluate the biological function of circMYBL2 in HCC progression.Furthermore,bioinformatics analysis,qRT‒PCR analysis,luciferase reporter assays,and western blot analysis were employed to investigate the interplay among circMYBL2,miR-1205,and E2F1.CircMYBL2 was found to exhibit marked upregulation in tumor tissues as well as HCC cell lines.Elevated expression of circMYBL2 increased the proliferation and migration of HCC cells,whereas circMYBL2 knockdown elicited contrasting effects.Mechanistically,our results indicated that circMYBL2 promoted E2F1 expression and facilitated HCC progression by sponging miR-1205.Our findings revealed that circMYBL2 contributed to HCC progression through the circMYBL2/miR-1205/E2F1 axis,suggesting the potential of circMYBL2 as a novel target for HCC treatment or a prognostic biomarker for HCC.
基金This study was supported by the Inner Mongolia Science and Technology Department Science and Technology Research Project(No.2021GG0270)National Natural Science Foundation of China(81860534)+5 种基金Natural Science Foundation of Inner Mongolia(2021MS08152)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT22004)Scientific and Technological Innovative Research Team for Inner Mongolia Medical University of Transformation Application of Organoid in Medical and Industrial Interdiscipline(YKD2022TD002)Major Project of Inner Mongolia Medical University(YKD2022 ZD002)Radiobiology System and Team Construction of Radiotherapy for Inner Mongolia Medical University(YKD2022XK014)Key Laboratoy of Radiation Physics and Biology of Inner Mongolia Medical University(PIKY2023030).
文摘Long non-coding RNAs(lncRNAs)have been implicated in cancer progression and drug resistance development.Moreover,there is evidence that lncRNA HOX transcript antisense intergenic RNA(HOTAIR)is involved in colorectal cancer(CRC)progression.The present study aimed to examine the functional role of lncRNA HOTAIR in conferring radiotherapy resistance in CRC cells,as well as the underlying mechanism.The relative expression levels of HOTAIR were examined in 70 pairs of CRC tumor and para-cancerous tissues,as well as in radiosensitive and radioresistant samples.The correlations between HOTAIR expression levels and clinical features of patients with CRC were assessed using the Chi-square test.Functional assays such as cell proliferation,colony formation and apoptosis assays were conducted to determine the radiosensitivity in CRC cells with HOTAIR silencing after treatment with different doses of radiation.RNA pull-down assay andfluorescence in situ hybridization(FISH)were used to determine the interaction between HOTAIR and DNA damage response mediator ataxia-telangiectasia mutated-and Rad3-related(ATR).HOTAIR was significantly upregulated in CRC tumor tissues,especially in radioresistant tumor samples.The elevated expression of HOTAIR was correlated with more advanced histological grades,distance metastasis and the poor prognosis in patients with CRC.Silencing HOTAIR suppressed the proliferation and promoted apoptosis and radiosensitivity in CRC cells.HOTAIR knockdown also inhibited the tumorigenesis of CRC cells and enhanced the sensitivity to radiotherapy in a mouse xenograft model.Moreover,the data showed that HOTAIR could interact with ATR to regulate the DNA damage repair signaling pathway.Silencing HOTAIR impaired the ATR-ATR interacting protein(ATRIP)complex and signaling in cell cycle progression.Collectively,the present results indicate that lncRNA HOTAIR facilitates the DNA damage response pathway and promotes radioresistance in CRC cells by targeting ATR.
基金Supported by the Science and Technology Program of Panyu Central Hospital,No.PY-2023-003the Science and Technology Program of Panyu,No.2020-Z04-054+4 种基金the Science and Technology Project of the Guangzhou Health Commission,No.20211A011114the Science and Technology Program of Guangzhou,No.202002020023the General University Youth Innovative Talent Project of Guangdong Province,No.2022KQNCX281the Guangdong Provincial Key Field Special Project for Ordinary Colleges and Universities,No.2023ZDZX2097the Foshan Engineering Technology Research Center for Prepared Food Processing and Quality Evaluation,No.2022-KJZX113.
文摘BACKGROUND Colorectal cancer(CRC)is among the most prevalent and life-threatening malignancies worldwide.Syndecan-2 methylation(mSDC2)testing has emerged as a widely used biomarker for early detection of CRC in stool and serum samples.Cancer(CRC)is among the most prevalent and life-threatening malignancies worldwide.mSDC2 testing has emerged as a widely used biomarker for early detection of CRC in stool and serum samples.AIM To validate the effectiveness of fecal DNA mSDC2 testing in the detection of CRC among a high-risk Chinese population to provide evidence-based data for the development of diagnostic and/or screening guidelines for CRC in China.METHODS A high-risk Chinese cohort consisting of 1130 individuals aged 40-79 years was selected for evaluation via fecal mSDC2 testing.Sensitivity and specificity for CRC,advanced adenoma(AA)and advanced colorectal neoplasia(ACN)were determined.High-risk factors for the incidence of colorectal lesions were determined and a logistic regression model was constructed to reflect the efficacy of the test.RESULTS A total of 1035 high-risk individuals were included in this study according to established criteria.Among them,16 suffered from CRC(1.55%),65 from AA(6.28%)and 189 from non-AAs(18.26%);150 patients were diagnosed with polyps(14.49%).Diagnoses were established based upon colonoscopic and pathological examinations.Sensitivities of the mSDC2 test for CRC and AA were 87.50%and 40.00%,respectively;specificities were 95.61%for other groups.Positive predictive values of the mSDC2 test for CRC,AA and ACN were 16.09%,29.89%and 45.98%,respectively;the negative predictive value for CRC was 99.79%.After adjusting for other high-risk covariates,mSDC2 test positivity was found to be a significant risk factor for the occurrence of ACN(P<0.001).CONCLUSION Our findings confirmed that offering fecal mSDC2 testing and colonoscopy in combination for CRC screening is effective for earlier detection of malignant colorectal lesions in a high-risk Chinese population.
文摘BACKGROUND The serratus anterior muscle,located in the lateral aspect of the thorax,plays a crucial role in shoulder movement and stability.Thoracoscopic surgery,while minimally invasive,often results in significant postoperative pain,complicating patient recovery and potentially extending hospital stays.Traditional anesthesia methods may not adequately address this pain,leading to increased complications such as agitation due to inadequate pain management.AIM To evaluate the application value of ultrasound-guided serratus anterior plane block(SAPB)in patients undergoing thoracoscopic surgery,focusing on its effects on postoperative analgesia and rehabilitation.METHODS Eighty patients undergoing thoracoscopic surgery between August 2021 and December 2022 were randomly divided into two groups:An observation group receiving ultrasound-guided SAPB and a control group receiving standard care without SAPB.Both groups underwent general anesthesia and were monitored for blood pressure,heart rate(HR),oxygen saturation,and pulse.The primary outcomes measured included mean arterial pressure(MAP),HR,postoperative visual analogue scale(VAS)scores for pain,supplemental analgesic use,and incidence of agitation.RESULTS The observation group showed significantly lower cortisol and glucose concentrations at various time points post-operation compared to the control group,indicating reduced stress responses.Moreover,MAP and HR levels were lower in the observation group during and after surgery.VAS scores were significantly lower in the observation group at 1 h,4 h,6 h,and 12 h post-surgery,and the rates of analgesic supplementation and agitation were significantly reduced compared to the control group.CONCLUSION Ultrasound-guided SAPB significantly improves postoperative analgesia and reduces agitation in patients undergoing thoracoscopic surgery.This technique stabilizes perioperative vital signs,decreases the need for supplemental analgesics,and minimizes postoperative pain and stress responses,underscoring its high application value in enhancing patient recovery and rehabilitation post-thoracoscopy.
基金This work was supported by the National Natural Science Foundation of China(Project No.32270278).
文摘Tanshinone and phenolic acids are the most important active substances of Salvia miltiorrhiza,and the insight into their transcriptional regulatory mechanisms is an essential process to increase their content in vivo.SmMYB36 has been found to have important regulatory functions in the synthesis of tanshinone and phenolic acid;paradoxically,its mechanism of action in S.miltiorrhiza is not clear.Here,we demonstrated that SmMYB36 functions as a promoter of tanshinones accumulation and a suppressor of phenolic acids through the generation of SmMYB36 overexpressed and chimeric SmMYB36-SRDX(EAR repressive domain)repressor hairy roots in combination with transcriptomic-metabolomic analysis.SmMYB36 directly down-regulate the key enzyme gene of primary metabolism,SmGAPC,up-regulate the tanshinones biosynthesis branch genes SmDXS2,SmGGPPS1,SmCPS1 and down-regulate the phenolic acids biosynthesis branch enzyme gene,SmRAS.Meanwhile,SmERF6,a positive regulator of tanshinone synthesis activating SmCPS1,was up-regulated and SmERF115,a positive regulator of phenolic acid biosynthesis activating SmRAS,was down-regulated.Furthermore,the seven acidic amino acids at the C-terminus of SmMYB36 are required for both self-activating domain and activation of target gene expression.As a consequence,this study contributes to reveal the potential relevance of transcription factors synergistically regulating the biosynthesis of tanshinone and phenolic acid.
基金This study was supported by the National Natural Science Foundation of China[Grant No.U20A20114]the soil N losses in the greenhouse field in the Yellow River Irrigation as affected by the annual changes of groundwater depth[Grant No.41361062].
文摘The rapidly growing world population,water shortage,and food security are promising problems for sustainable agriculture.Farmers adopt higher irrigation and fertilizer applications to increase crop production resulting in environmental pollution.This study aimed to identify the long-term effects of intelligent water and fertilizers used in corn yield and soil nutrient status.A series of field experiments were conducted for six years with treatments as:farmer accustomed to fertilization used as control(CON),fertilizer decrement(KF),fertilizer decrement+watersaving irrigation(BMP1);combined application of organic and inorganic fertilizer+water-saving irrigation(BMP2),and combined application of controlled-release fertilizer(BMP3).A significant improvement was observed in soil organic matter(14.9%),nitrate nitrogen(106.7%),total phosphorus(23.9%),available phosphorus(26.2%),straw yield(44.8%),and grain yield(54.7%)with BMP2 treatment as compared to CON.The study concludes that integrating chemical and organic fertilizers with water-saving irrigation(BMP2)is a good approach to increasing corn productivity,ensuring water safety and improving soil health.The limitations of the current study include the identification of fertilizer type and its optimum dose,irrigation water type,and geographical position.
基金financially supported by Natural Science Foundation of Heilongjiang(TD2022C003,JJ2022YX0475)National Key Research and Development Program of China(2021YFD1201104-02-02,2021YFF1001202)+1 种基金Backbone of Young Talent Scholar Project of Northeast Agricultural University(to Ying Zhao)the National Natural Science Foundation of China(U20A2027,31971899,32272093,32272072)。
文摘Plant Dna JA proteins act as molecular chaperones in response to environmental stressors.The purpose of this study was to characterize the function and regulatory mechanisms of Dna JA genes in soybean.Gene expression profiles in various soybean tissues at various stages of development indicated that Gm Dna JAs function in the coordination of stress and plant hormone responses.Gm Dna JA6 was identified as a candidate regulator of saline and alkaline stress resistance and Gm Dna JA6 overexpression lines showed increased soybean saline and alkaline tolerance.Dna J interacted with Hsp70,and Gm Hsp70 increased the saline and alkaline tolerance of plants with chimeric soybean hairy roots.
基金financial support from the National Key Research and Development Program of China,China (Grant No.2022YFB4200203)the Key project of Nature Science Foundation of Tianjin,China (22JCZDJC00120)the 111 Project,China(B16027)。
文摘The concept of tandem solar cells(TSCs) is an effective way to substantially further improve the efficiency of solar cells. The excellent optoelectronic properties and bandgap tunability of perovskites make them promising for constructing efficient TSCs. Currently, TSCs based on perovskite have been extensively studied. Besides, the performance of organic solar cells has been greatly improved recently due to the wider and more efficient spectral utilization. Accordingly, research on perovskite/organic TSCs has garnered significant attention. It has potential application advantages in emerging fields such as wearable devices by virtue of flexibility. In addition, orthogonal solvents can be adopted to realize the separate preparation of subcells with the solution method, which greatly reduces fabrication complexity;moreover, fabrication with less equipment significantly cuts down the device cost. Meanwhile, organics with more adjustability on the optoelectronic properties provide more tuning strategies for high-performance perovskite/organic TSCs. However, comprehensive and timely reviews on the perovskite/organic TSCs are deficient. Therefore, we expect to accomplish a review on this innovative TSCs to facilitate researchers with a deeper understanding of perovskite/organic TSCs. Herein, we firstly review the significant progress of perovskite and organic solar cells. Then, current achievements of perovskite/organic TSCs are summarized and introduced with a particular focus on the device structure design. Finally, we discuss existential challenges and propose effective strategies for future engineering.
基金“Dengfeng”Project of Talent Training Plan of Beijing Medical Management Center(Number DFL20220601)Beijing Municipal Administration of Hospitals Incubating Program(Number PX2023023)+3 种基金National Natural Science Foundation of China(Number 82170301)Beijing Municipal Administration of Hospitals Incubating Program(Number PX2022026)Beijing Natural Science Foundation(Number L222152)the Ethics Committee of Beijing Anzhen Hospital(2020016X).
文摘Background:Atrioventricular septal defects(AVSDs)are screened and diagnosed usually rely on the imaging characteristics of fetal echocardiography(FE).However,diagnosis on images is heavily depended on sonographers’experience and the quantitative data are rarely studied.Objective:This study aimed to realize the prenatal diagnosis of AVSDs by analyzing the quantitative data on FE.Methods:One hundred and thirteen cardiac quantitative data was analyzed in 370 normal and 49 AVSDs fetuses retrospectively.The top six with the highest diagnostic accuracy rate were acquired according to the area under the curve(AUC),and the diagnostic value of six variables was analyzed.Results:Six parameters obtained on the four-chamber view(4CHV),including the atrial to ventricular length ratio in end-diastole(AVLR-ED),AVLR-ED combined with the atrial to ventricular length ratio in end-systole(AVLR-ES),quantile score(Q score)of AVLR-ED,Q score of AVLR-ES,Q score of ventricle length in end-diastole(VL-ED),and AVLR-ES,were the top six with the highest diagnostic value,and the AUC was 0.99(95%CI 0.99–1.00),0.99(95%CI 0.99–1.00),0.99(95%CI 0.98–1.00),0.95(95%CI 0.91–0.99),0.93(95%CI 0.87–0.99),and 0.91(95%CI 0.83–1.00),respectively.And within the 20%false positive rate,the diagnostic sensitivity was greater than 100%,100%,100%,90%,90%,and 88%,respectively.Conclusions:Six variables could be used for prenatal diagnosis of AVSDs.Among them,AVLR-ED and Q score of AVLR-ED,obtained on the 4CHV,were more convenient to acquire and had higher diagnostic accuracy.
基金the National Natural Science Foundation of China,Nos.62272480 and 62072470and the National Science Foundation of Hunan Province,Nos.2021JJ30881 and 2020JJ4758.
文摘Knowledge graph(KG)fact prediction aims to complete a KG by determining the truthfulness of predicted triples.Reinforcement learning(RL)-based approaches have been widely used for fact prediction.However,the existing approaches largely suffer from unreliable calculations on rule confidences owing to a limited number of obtained reasoning paths,thereby resulting in unreliable decisions on prediction triples.Hence,we propose a new RL-based approach named EvoPath in this study.EvoPath features a new reward mechanism based on entity heterogeneity,facilitating an agent to obtain effective reasoning paths during random walks.EvoPath also incorporates a new postwalking mechanism to leverage easily overlooked but valuable reasoning paths during RL.Both mechanisms provide sufficient reasoning paths to facilitate the reliable calculations of rule confidences,enabling EvoPath to make precise judgments about the truthfulness of prediction triples.Experiments demonstrate that EvoPath can achieve more accurate fact predictions than existing approaches.
基金This study received funds from the National Natural Science Foundation of China[41361062]National Natural Science Foundation of China Joint Fund for Regional Innovation and Development[U20A20114]+1 种基金Natural Science Foundation of Ningxia Hui Autonomous Region[2022AAC03449]Station of Observation and Experiment National Agricultural Environment in Yinchuan,Ningxia,China[NAES091AE18].
文摘The increasing world population has forced excessive chemical fertilizer and irrigation to complete the global food demand,deteriorating the water quality and nutrient losses.Short-term studies do not compile the evidences;therefore,the study aimed to identify the effectiveness of reduced doses of inorganic fertilizer and water-saving practices,hence,a six-year experiment(2015-2020)was conducted in China to address the knowledge gap.The experimental treatments were:farmer accustomed fertilization used as control(525:180:30 kg NPK ha^(-1)),fertilizer decrement(450:150:15 kg NPK ha^(-1)),fertilizer decrement+water-saving irrigation(450:150:15 kg NPK ha^(-1)),application of organic and inorganic fertilizer+water-saving irrigation(375:120:0 kg NPK ha^(-1)+4.5 tones organic fertilizer ha^(-1)),and application of controlled-release fertilizer(80:120:15 kg NPK ha^(-1)).Each treatment was replicated thrice following a randomized complete block design.The results achieved herein showed that control has the highest losses in the six-year study for total nitrogen(225.97 mg L^(-1)),total soluble nitrogen(121.58 mg L^(-1)),nitrate nitrogen(0.93 mg L^(-1)),total phosphorus(0.57 mg L^(-1)),and total soluble phosphorus(0.57 mg L^(-1))respectively.Reduced fertilizer and water application improved crop nutrient uptake,nitrogen concentration was significantly enhanced with organic and inorganic fertilizer+water-saving irrigation,P concentration was increased with fertilizer decrement+water-saving irrigation,and K concentration was improved with fertilizer decrement+water-saving irrigation.Hence,this study concludes that reduced inorganic fertilizer dose combined with water-saving practices is significantly helpful in reducing nutrient leaching losses and improving nutrient uptake and water pollution.Further studies are needed to explore the impacts of reduced fertilization and water-saving irrigation on leaching losses.The benefits at different climatic conditions,soil types,and fertilizer types with application methods are also a research gap.