Computational tool-assisted primer design for real-time reverse transcription(RT)PCR(qPCR)analysis largely ignores the sequence similarities between sequences of homologous genes in a plant genome.It can lead to false...Computational tool-assisted primer design for real-time reverse transcription(RT)PCR(qPCR)analysis largely ignores the sequence similarities between sequences of homologous genes in a plant genome.It can lead to false confidence in the quality of the designed primers,which sometimes results in skipping the optimization steps for qPCR.However,the optimization of qPCR parameters plays an essential role in the efficiency,specificity,and sensitivity of each gene’s primers.Here,we proposed an optimized approach to sequentially optimizing primer sequences,annealing temperatures,primer concentrations,and cDNA concentration range for each reference(and target)gene.Our approach started with a sequence-specific primer design that should be based on the single-nucleotide polymorphisms(SNPs)present in all the homologous sequences for each of the reference(and target)genes under study.By combining the efficiency calibrated and standard curve methods with the 2−ΔΔCt method,the standard cDNA concentration curve with a logarithmic scale was obtained for each primer pair for each gene.As a result,an R 2≥0.9999 and the efficiency(E)=100±5% should be achieved for the best primer pair of each gene,which serve as the prerequisite for using the 2^(−ΔΔCt) method for data analysis.We applied our newly developed approach to identify the best reference genes in different tissues and at various inflorescence developmental stages of Tripidium ravennae,an ornamental and biomass grass,and validated their utility under varying abiotic stress conditions.We also applied this approach to test the expression stability of six reference genes in soybean under biotic stress treatment with Xanthomonas axonopodis pv.glycines(Xag).Thus,these case studies demonstrated the effectiveness of our optimized protocol for qPCR analysis.展开更多
We report on a ground X-ray calibration of two X-ray telescope prototypes at the PANTER X-ray Test Facility, operated by the Max-Planck-Institute for Extraterrestrial Physics, in Neuried, Germany.The X-ray telescope p...We report on a ground X-ray calibration of two X-ray telescope prototypes at the PANTER X-ray Test Facility, operated by the Max-Planck-Institute for Extraterrestrial Physics, in Neuried, Germany.The X-ray telescope prototypes were developed by the Institute of Precision Optical Engineering(IPOE)of Tongji University, in a conical Wolter-I configuration, using thermal glass slumping technology.Prototype #1 with three layers and Prototype #2 with 21 layers were tested to assess the prototypes’ onaxis imaging performance. The measurement of Prototype #1 indicates a Half Power Diameter(HPD) of 82′′ at 1.49 keV. As for Prototype #2, we performed more comprehensive measurements of on-axis angular resolution and effective area at several energies ranging from 0.5–10 keV. The HPD and effective area are111′′ and 39 cm^2 at 1.49 keV, respectively, at which energy the on-axis performance of the prototypes is our greatest concern.展开更多
基金The authors thank the USDA National Institute of Food and Agriculture Hatch project 02685 and North Carolina State University for the startup funds to the Liu laboratorythe NSFC fund 31871646 to the Zhao laboratory。
文摘Computational tool-assisted primer design for real-time reverse transcription(RT)PCR(qPCR)analysis largely ignores the sequence similarities between sequences of homologous genes in a plant genome.It can lead to false confidence in the quality of the designed primers,which sometimes results in skipping the optimization steps for qPCR.However,the optimization of qPCR parameters plays an essential role in the efficiency,specificity,and sensitivity of each gene’s primers.Here,we proposed an optimized approach to sequentially optimizing primer sequences,annealing temperatures,primer concentrations,and cDNA concentration range for each reference(and target)gene.Our approach started with a sequence-specific primer design that should be based on the single-nucleotide polymorphisms(SNPs)present in all the homologous sequences for each of the reference(and target)genes under study.By combining the efficiency calibrated and standard curve methods with the 2−ΔΔCt method,the standard cDNA concentration curve with a logarithmic scale was obtained for each primer pair for each gene.As a result,an R 2≥0.9999 and the efficiency(E)=100±5% should be achieved for the best primer pair of each gene,which serve as the prerequisite for using the 2^(−ΔΔCt) method for data analysis.We applied our newly developed approach to identify the best reference genes in different tissues and at various inflorescence developmental stages of Tripidium ravennae,an ornamental and biomass grass,and validated their utility under varying abiotic stress conditions.We also applied this approach to test the expression stability of six reference genes in soybean under biotic stress treatment with Xanthomonas axonopodis pv.glycines(Xag).Thus,these case studies demonstrated the effectiveness of our optimized protocol for qPCR analysis.
基金supported by the National Natural Science Foundation of China (Grant Nos. U1731242 and 61621001)Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA15010400 and XDA04060605)
文摘We report on a ground X-ray calibration of two X-ray telescope prototypes at the PANTER X-ray Test Facility, operated by the Max-Planck-Institute for Extraterrestrial Physics, in Neuried, Germany.The X-ray telescope prototypes were developed by the Institute of Precision Optical Engineering(IPOE)of Tongji University, in a conical Wolter-I configuration, using thermal glass slumping technology.Prototype #1 with three layers and Prototype #2 with 21 layers were tested to assess the prototypes’ onaxis imaging performance. The measurement of Prototype #1 indicates a Half Power Diameter(HPD) of 82′′ at 1.49 keV. As for Prototype #2, we performed more comprehensive measurements of on-axis angular resolution and effective area at several energies ranging from 0.5–10 keV. The HPD and effective area are111′′ and 39 cm^2 at 1.49 keV, respectively, at which energy the on-axis performance of the prototypes is our greatest concern.