An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the G...An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the GBD in the system was calculated by the energy model,the critical geometric and mechanical conditions for the structure transformation of head dislocation of the pile-up were analyzed,and the influence of the number density of the dislocations and the angle between Burgers vectors of two decomposed dislocations on the transformation mode of head dislocation was discussed.The results show when the GBD is accumulated at triple junction,the head dislocation of the GBD is decomposed into two Burgers vectors of these dislocations unless the angle between the two vectors is less than 90°,and the increase of applied external stress can reduce the energy barrier of the dislocation decomposition.The mechanism that the ultrafine-grained metal material has both high strength and plasticity owing to the structure transformation of the pile-up of the GBD at the triple junction of the grain boundary is revealed.展开更多
The phase field crystal (PFC) model is used to simulate the premelting dislocation movement of the symmetric tilt grain boundary (STGB) under strain action when the system temperature is at far from the melting po...The phase field crystal (PFC) model is used to simulate the premelting dislocation movement of the symmetric tilt grain boundary (STGB) under strain action when the system temperature is at far from the melting point and close to the melting point, respectively. The results show a local premelting occurs surrounding the dislocations as the premelting temperature is approached to from below temperature. The premelting dislocations of the STGB can glide under strain action, and the premelting region is a companion for dislocation gliding. The process of STGB decay is very similar at the two high temperature conditions. As premelting presents, it diminishes the gliding resistance for the dislocations and leads to a faster movement of dislocations, and also brings about more energy reduction of the system during the decay process of STGB. In spite of applying strain to these premelting samples in whole decay processes of STGB, the premelting dislocation region does not obviously develop and extend. This indicates that the external strain action does not promote the premelting at the high temperature, and cannot induce more premelting dislocation, which can be owed to the premelting phase around the dislocation exhibit fluid-like properties and to the premelting dislocation easily gliding and relaxing the strain energy; this is in agreement with the results of experiments and molecular dynamics.展开更多
The phase field crystal method and Continuum Modeling are applied to study the cooperative dislocation motion of the grain boundary(GB)migration,the manner of the nucleation of the grain and of the grain growth in two...The phase field crystal method and Continuum Modeling are applied to study the cooperative dislocation motion of the grain boundary(GB)migration,the manner of the nucleation of the grain and of the grain growth in two dimensions(2 D)under the deviatoric deformation at high temperature.Three types of the nucleation modes of new finding are observed by the phase field crystal simulation:The first mode of the nucleation is generated by the GB splitting into two sub-GBs;the second mode is of the reaction of the sub-GB dislocations,such as,the generation and annihilation of a pair of partial Frank sessile dislocation in 2 D.The process can be considered as the nucleation of dynamic recrystallization;the third mode is caused by two oncoming rows of the dislocations of these sub-GBs,crossing and passing each other to form new gap which is the nucleation place of the new deformed grain.The research is shown that due to the nucleation of different modes the mechanism of the grain growth by means of the sub-GB migration is different,and therefore,the grain growth rates are also different.Under the deviatoric deformation of the applied biaxial strain,the grain growth is faster than that of the grain growth without external applied stress.It is observed that the cooperative dislocation motion of the GB migration under the deviatoric deformation accompanies with local plastic flow and the state of the stress of the system changes sharply.When the system is in the process of recrystallized grain growth,the system energy is in an unstable state due to the release of the strain energy to cause that the reverse movement of the plastic flow occurs.The area growth of the deformed grain is approximately proportional to the strain square and also to the time square.The rule of the time square of the deformed grain growth can also be deduced by establishing the continuum dynamic equation of the biaxial strain-driven migration of the GB.The copper metal is taken as an example of the calculation,and the obtained result is a good agreement with that of the experiment.展开更多
Phase field crystal (PFC) model is employed to simulate the process of growth of epitaxial layer on plane-convex substrate with a lattice mismatch and a small inclination angle. The variation of the systematic free ...Phase field crystal (PFC) model is employed to simulate the process of growth of epitaxial layer on plane-convex substrate with a lattice mismatch and a small inclination angle. The variation of the systematic free energy, the total atomic number of the epitaxial layer, and the effect of the curvature and the angle of the substrate are analyzed. The results show that when the surface of the substrate is plane, the free energy increases with the increase of the substrate inclination angle, and also the total atomic number of the epitaxial layer increases; while the surface of the substrate is convex, the free energy decreases with the increase of substrate angle and so also the total atomic number of the epitaxial layer decrease. This is the reason that the frontier of surface of epitaxial layer changes from the step bunching to the hill-and-valley facet structure with the increasing of the inclination angle of convex substrate. These results are in good agreement with the other method results.展开更多
基金financial supports from the National Natural Science Foundation of China(Nos.51161003,51561031)the Natural Science Foundation of Guangxi,China(No.2018GXNSFAA138150)。
文摘An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the GBD in the system was calculated by the energy model,the critical geometric and mechanical conditions for the structure transformation of head dislocation of the pile-up were analyzed,and the influence of the number density of the dislocations and the angle between Burgers vectors of two decomposed dislocations on the transformation mode of head dislocation was discussed.The results show when the GBD is accumulated at triple junction,the head dislocation of the GBD is decomposed into two Burgers vectors of these dislocations unless the angle between the two vectors is less than 90°,and the increase of applied external stress can reduce the energy barrier of the dislocation decomposition.The mechanism that the ultrafine-grained metal material has both high strength and plasticity owing to the structure transformation of the pile-up of the GBD at the triple junction of the grain boundary is revealed.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 51161003), the Natural Science Foundation of Guangxi Province (Grant No. 2012GXNSFDA053001) and Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi Zhuang Autonomous Region (Grant No. GXKFJ12-01).
文摘The phase field crystal (PFC) model is used to simulate the premelting dislocation movement of the symmetric tilt grain boundary (STGB) under strain action when the system temperature is at far from the melting point and close to the melting point, respectively. The results show a local premelting occurs surrounding the dislocations as the premelting temperature is approached to from below temperature. The premelting dislocations of the STGB can glide under strain action, and the premelting region is a companion for dislocation gliding. The process of STGB decay is very similar at the two high temperature conditions. As premelting presents, it diminishes the gliding resistance for the dislocations and leads to a faster movement of dislocations, and also brings about more energy reduction of the system during the decay process of STGB. In spite of applying strain to these premelting samples in whole decay processes of STGB, the premelting dislocation region does not obviously develop and extend. This indicates that the external strain action does not promote the premelting at the high temperature, and cannot induce more premelting dislocation, which can be owed to the premelting phase around the dislocation exhibit fluid-like properties and to the premelting dislocation easily gliding and relaxing the strain energy; this is in agreement with the results of experiments and molecular dynamics.
基金supported by National Nature Science Foundation of China(Nos.51161003 and 51561031)Nature Science Foundation of Guangxi Province(No.2018GXNSFAA138150)。
文摘The phase field crystal method and Continuum Modeling are applied to study the cooperative dislocation motion of the grain boundary(GB)migration,the manner of the nucleation of the grain and of the grain growth in two dimensions(2 D)under the deviatoric deformation at high temperature.Three types of the nucleation modes of new finding are observed by the phase field crystal simulation:The first mode of the nucleation is generated by the GB splitting into two sub-GBs;the second mode is of the reaction of the sub-GB dislocations,such as,the generation and annihilation of a pair of partial Frank sessile dislocation in 2 D.The process can be considered as the nucleation of dynamic recrystallization;the third mode is caused by two oncoming rows of the dislocations of these sub-GBs,crossing and passing each other to form new gap which is the nucleation place of the new deformed grain.The research is shown that due to the nucleation of different modes the mechanism of the grain growth by means of the sub-GB migration is different,and therefore,the grain growth rates are also different.Under the deviatoric deformation of the applied biaxial strain,the grain growth is faster than that of the grain growth without external applied stress.It is observed that the cooperative dislocation motion of the GB migration under the deviatoric deformation accompanies with local plastic flow and the state of the stress of the system changes sharply.When the system is in the process of recrystallized grain growth,the system energy is in an unstable state due to the release of the strain energy to cause that the reverse movement of the plastic flow occurs.The area growth of the deformed grain is approximately proportional to the strain square and also to the time square.The rule of the time square of the deformed grain growth can also be deduced by establishing the continuum dynamic equation of the biaxial strain-driven migration of the GB.The copper metal is taken as an example of the calculation,and the obtained result is a good agreement with that of the experiment.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 51161003), the Natural Science Foundation of Guangxi Province (Grant No. 2012GXNSFDA053001) and Ministry-Province jointly-constructed cultivation base for State Key Laboratory of Processing for non-ferrous metal and featured materials, Guangxi Zhuang Autonomous Region (Grant No. GXKF J 12 -01 ).
文摘Phase field crystal (PFC) model is employed to simulate the process of growth of epitaxial layer on plane-convex substrate with a lattice mismatch and a small inclination angle. The variation of the systematic free energy, the total atomic number of the epitaxial layer, and the effect of the curvature and the angle of the substrate are analyzed. The results show that when the surface of the substrate is plane, the free energy increases with the increase of the substrate inclination angle, and also the total atomic number of the epitaxial layer increases; while the surface of the substrate is convex, the free energy decreases with the increase of substrate angle and so also the total atomic number of the epitaxial layer decrease. This is the reason that the frontier of surface of epitaxial layer changes from the step bunching to the hill-and-valley facet structure with the increasing of the inclination angle of convex substrate. These results are in good agreement with the other method results.